
Sizing Router Buffers

Guido Appenzeller
Stanford University

appenz@cs.stanford.edu

Isaac Keslassy
Stanford University

keslassy@yuba.stanford.edu

Nick McKeown
Stanford University

nickm@stanford.edu

ABSTRACT
All Internet routers contain buffers to hold packets during
times of congestion. Today, the size of the buffers is deter-
mined by the dynamics of TCP’s congestion control algo-
rithm. In particular, the goal is to make sure that when a
link is congested, it is busy 100% of the time; which is equiv-
alent to making sure its buffer never goes empty. A widely
used rule-of-thumb states that each link needs a buffer of
size B = RTT × C, where RTT is the average round-trip
time of a flow passing across the link, and C is the data rate
of the link. For example, a 10Gb/s router linecard needs
approximately 250ms × 10Gb/s = 2.5Gbits of buffers; and
the amount of buffering grows linearly with the line-rate.
Such large buffers are challenging for router manufacturers,
who must use large, slow, off-chip DRAMs. And queueing
delays can be long, have high variance, and may destabilize
the congestion control algorithms. In this paper we argue
that the rule-of-thumb (B = RTT ×C) is now outdated and
incorrect for backbone routers. This is because of the large
number of flows (TCP connections) multiplexed together on
a single backbone link. Using theory, simulation and exper-
iments on a network of real routers, we show that a link
with n flows requires no more than B = (RTT ×C)/

√
n, for

long-lived or short-lived TCP flows. The consequences on
router design are enormous: A 2.5Gb/s link carrying 10,000
flows could reduce its buffers by 99% with negligible dif-
ference in throughput; and a 10Gb/s link carrying 50,000
flows requires only 10Mbits of buffering, which can easily be
implemented using fast, on-chip SRAM.

Categories and Subject Descriptors
C.2 [Internetworking]: Routers

∗The authors are with the Computer Systems Laboratory at
Stanford University. Isaac Keslassy is now with the Tech-
nion (Israel Institute of Technology), Haifa, Israel. This
work was funded in part by the Stanford Networking Re-
search Center, the Stanford Center for Integrated Systems,
and a Wakerly Stanford Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04, Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

General Terms
Design, Performance.

Keywords
Internet router, buffer size, bandwidth delay product, TCP.

1. INTRODUCTION AND MOTIVATION

1.1 Background
Internet routers are packet switches, and therefore buffer

packets during times of congestion. Arguably, router buffers
are the single biggest contributor to uncertainty in the Inter-
net. Buffers cause queueing delay and delay-variance; when
they overflow they cause packet loss, and when they under-
flow they can degrade throughput. Given the significance
of their role, we might reasonably expect the dynamics and
sizing of router buffers to be well understood, based on a
well-grounded theory, and supported by extensive simula-
tion and experimentation. This is not so.

Router buffers are sized today based on a rule-of-thumb
commonly attributed to a 1994 paper by Villamizar and
Song [1].Using experimental measurements of at most eight
TCP flows on a 40 Mb/s link, they concluded that — be-
cause of the dynamics of TCP’s congestion control algo-
rithms — a router needs an amount of buffering equal to
the average round-trip time of a flow that passes through
the router, multiplied by the capacity of the router’s net-
work interfaces. This is the well-known B = RTT ×C rule.
We will show later that the rule-of-thumb does indeed make
sense for one (or a small number of) long-lived TCP flows.

Network operators follow the rule-of-thumb and require
that router manufacturers provide 250ms (or more) of buffer-
ing [2]. The rule is found in architectural guidelines [3], too.
Requiring such large buffers complicates router design, and
is an impediment to building routers with larger capacity.
For example, a 10Gb/s router linecard needs approximately
250ms × 10Gb/s= 2.5Gbits of buffers, and the amount of
buffering grows linearly with the line-rate.

The goal of our work is to find out if the rule-of-thumb still
holds. While it is still true that most traffic uses TCP, the
number of flows has increased significantly. Today, backbone
links commonly operate at 2.5Gb/s or 10Gb/s, and carry
over 10,000 flows [4].

One thing is for sure: It is not well understood how much
buffering is actually needed, or how buffer size affects net-
work performance [5]. In this paper we argue that the rule-
of-thumb is outdated and incorrect. We believe that sig-

 0

 10

 20

 2 2.5 3 3.5 4 4.5

Window [pkts]
W = 2 Tp * C

 0

 2

 4

 6

 8

 2 2.5 3 3.5 4 4.5

Q [pkts]

Figure 1: Window (top) and router queue (bottom) for a TCP flow through a bottleneck link.

Figure 2: Single flow topology consisting of an ac-
cess link of latency lAcc and link capacity CAcc and a
bottleneck link of capacity C and latency l.

nificantly smaller buffers could be used in backbone routers
(e.g. by removing 99% of the buffers) without a loss in net-
work utilization, and we show theory, simulations and exper-
iments to support our argument. At the very least, we be-
lieve that the possibility of using much smaller buffers war-
rants further exploration and study, with more comprehen-
sive experiments needed on real backbone networks. This
paper isn’t the last word, and our goal is to persuade one
or more network operators to try reduced router buffers in
their backbone network.

It is worth asking why we care to accurately size router
buffers; with declining memory prices, why not just over-
buffer routers? We believe overbuffering is a bad idea for
two reasons. First, it complicates the design of high-speed
routers, leading to higher power consumption, more board
space, and lower density. Second, overbuffering increases
end-to-end delay in the presence of congestion. Large buffers
conflict with the low-latency needs of real time applications
(e.g. video games, and device control). In some cases large
delays can make congestion control algorithms unstable [6]
and applications unusable.

1.2 Where does the rule-of-thumb come from?
The rule-of-thumb comes from a desire to keep a congested

link as busy as possible, so as to maximize the throughput
of the network. We are used to thinking of sizing queues so
as to prevent them from overflowing and losing packets. But
TCP’s “sawtooth” congestion control algorithm is designed
to fill any buffer, and deliberately causes occasional loss to
provide feedback to the sender. No matter how big we make
the buffers at a bottleneck link, TCP will cause the buffer
to overflow.

Router buffers are sized so that when TCP flows pass
through them, they don’t underflow and lose throughput;
and this is where the rule-of-thumb comes from. The metric
we will use is throughput, and our goal is to determine the
size of the buffer so as to maximize throughput of a bottle-
neck link. The basic idea is that when a router has packets
buffered, its outgoing link is always busy. If the outgoing

link is a bottleneck, then we want to keep it busy as much
of the time as possible, and so we just need to make sure
the buffer never underflows and goes empty.

Fact: The rule-of-thumb is the amount of buffering
needed by a single TCP flow, so that the buffer at the bot-
tleneck link never underflows, and so the router doesn’t lose
throughput.

The rule-of-thumb comes from the dynamics of TCP’s
congestion control algorithm. In particular, a single TCP
flow passing through a bottleneck link requires a buffer size
equal to the bandwidth-delay product in order to prevent the
link from going idle and thereby losing throughput. Here,
we will give a quick intuitive explanation of where the rule-
of-thumb comes from; in particular, why this is just the right
amount of buffering if the router carried just one long-lived
TCP flow. In Section 2 we will give a more precise explana-
tion, which will set the stage for a theory for buffer sizing
with one flow, or with multiple long- and short-lived flows.
Later, we will confirm that our theory is true using simula-
tion and experiments in Sections 5.1 and 5.2 respectively.

Consider the simple topology in Figure 2 in which a single
TCP source sends an infinite amount of data with packets
of constant size. The flow passes through a single router,
and the sender’s access link is much faster than the re-
ceiver’s bottleneck link of capacity C, causing packets to be
queued at the router. The propagation time between sender
and receiver (and vice versa) is denoted by Tp. Assume
that the TCP flow has settled into the additive-increase and
multiplicative-decrease (AIMD) congestion avoidance mode.

The sender transmits a packet each time it receives an
ACK, and gradually increases the number of outstanding
packets (the window size), which causes the buffer to grad-
ually fill up. Eventually a packet is dropped, and the sender
doesn’t receive an ACK. It halves the window size and
pauses.1 The sender now has too many packets outstanding
in the network: it sent an amount equal to the old win-
dow, but now the window size has halved. It must therefore
pause while it waits for ACKs to arrive before it can resume
transmitting.

The key to sizing the buffer is to make sure that while
the sender pauses, the router buffer doesn’t go empty and
force the bottleneck link to go idle. By determining the rate
at which the buffer drains, we can determine the size of the
reservoir needed to prevent it from going empty. It turns
out that this is equal to the distance (in bytes) between the
peak and trough of the “sawtooth” representing the TCP

1We assume the reader is familiar with the dynamics of TCP.
A brief reminder of the salient features can be found in the
appendix of the extended version of this paper [7].

window size. We will show later that this corresponds to
the rule-of-thumb: B = RTT × C.

It is worth asking if the TCP sawtooth is the only factor
that determines the buffer size. For example, doesn’t sta-
tistical multiplexing, and the sudden arrival of short bursts
have an effect? In particular, we might expect the (very
bursty) TCP slow-start phase to increase queue occupancy
and frequently fill the buffer. Figure 1 illustrates the ef-
fect of bursts on the queue size for a typical single TCP
flow. Clearly the queue is absorbing very short term bursts
in the slow-start phase, while it is accommodating a slowly
changing window size in the congestion avoidance phase. We
will examine the effect of burstiness caused by short-flows in
Section 4. We’ll find that the short-flows play a very small
effect, and that the buffer size is, in fact, dictated by the
number of long flows.

1.3 How buffer size influences router design
Having seen where the rule-of-thumb comes from, let’s see

why it matters; in particular, how it complicates the design
of routers. At the time of writing, a state of the art router
linecard runs at an aggregate rate of 40Gb/s (with one or
more physical interfaces), has about 250ms of buffering, and
so has 10Gbits (1.25Gbytes) of buffer memory.

Buffers in backbone routers are built from commercial
memory devices such as dynamic RAM (DRAM) or static
RAM (SRAM).2 The largest commercial SRAM chip today
is 36Mbits, which means a 40Gb/s linecard would require
over 300 chips, making the board too large, too expensive
and too hot. If instead we try to build the linecard using
DRAM, we would just need 10 devices. This is because
DRAM devices are available up to 1Gbit. But the prob-
lem is that DRAM has a random access time of about 50ns,
which is hard to use when a minimum length (40byte) packet
can arrive and depart every 8ns. Worse still, DRAM access
times fall by only 7% per year, and so the problem is going
to get worse as line-rates increase in the future.

In practice router linecards use multiple DRAM chips
in parallel to obtain the aggregate data-rate (or memory-
bandwidth) they need. Packets are either scattered across
memories in an ad-hoc statistical manner, or use an SRAM
cache with a refresh algorithm [8]. Either way, such a large
packet buffer has a number of disadvantages: it uses a very
wide DRAM bus (hundreds or thousands of signals), with
a huge number of fast data pins (network processors and
packet processor ASICs frequently have more than 2,000
pins making the chips large and expensive). Such wide buses
consume large amounts of board space, and the fast data
pins on modern DRAMs consume a lot of power.

In summary, it is extremely difficult to build packet buffers
at 40Gb/s and beyond. Given how slowly memory speeds
improve, this problem is going to get worse over time.

Substantial benefits could be gained by placing the buffer
memory directly on the chip that processes the packets (a
network processor or an ASIC). In this case, very wide and
fast access to a single memory is possible. Commercial
packet processor ASICs have been built with 256Mbits of
“embedded”DRAM. If memories of 2% the delay-bandwidth
product were acceptable (i.e. 98% smaller than they are to-
day), then a single-chip packet processor would need no ex-
ternal memories. We will present evidence later that buffers

2DRAM includes devices with specialized I/O, such as DDR-
SDRAM, RDRAM, RLDRAM and FCRAM.

Figure 3: Schematic evolution of a router buffer for
a single TCP flow.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90

Window [Pkts]

 0

 50

 100

 0 10 20 30 40 50 60 70 80 90

 Queue [Pkts]

Figure 4: A TCP flow through a single router with
buffers equal to the delay-bandwidth product. The
upper graph shows the time evolution of the conges-
tion window W (t). The lower graph shows the time
evolution of the queue length Q(t).

this small might make little or no difference to the utilization
of backbone links.

2. BUFFER SIZE FOR A SINGLE
LONG-LIVED TCP FLOW

In the next two sections we will determine how large the
router buffers need to be if all the TCP flows are long-lived.
We will start by examining a single long-lived flow, and then
consider what happens when many flows are multiplexed
together.

Starting with a single flow, consider again the topology in
Figure 2 with a single sender and one bottleneck link. The
schematic evolution of the router’s queue (when the source
is in congestion avoidance) is shown in Figure 3. From time
t0, the sender steadily increases its window-size and fills the
buffer, until the buffer has to drop the first packet. Just
under one round-trip time later, the sender times-out at
time t1, because it is waiting for an ACK for the dropped
packet. It immediately halves its window size from Wmax to
Wmax/2 packets3. Now, the window size limits the number
of unacknowledged (i.e. outstanding) packets in the net-
work. Before the loss, the sender is allowed to have Wmax

outstanding packets; but after the timeout, it is only allowed
to have Wmax/2 outstanding packets. Thus, the sender has
too many outstanding packets, and it must pause while it
waits for the ACKs for Wmax/2 packets. Our goal is to
make sure the router buffer never goes empty in order to
keep the router fully utilized. Therefore, the buffer must
not go empty while the sender is pausing.

If the buffer never goes empty, the router must be sending
packets onto the bottleneck link at constant rate C. This in

3While TCP measures window size in bytes, we will count
window size in packets for simplicity of presentation.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90

Window [Pkts]

 0

 50

 100

 0 10 20 30 40 50 60 70 80 90

 Queue [Pkts]

Figure 5: A TCP flow through an underbuffered
router.

 0
 50

 100
 150
 200
 250
 300
 350

 0 10 20 30 40 50 60 70 80 90

Window [Pkts]

 0
 50

 100
 150

 0 10 20 30 40 50 60 70 80 90

Queue [Pkts]

Figure 6: A TCP flow through an overbuffered
router.

turn means that ACKs arrive to the sender at rate C. The
sender therefore pauses for exactly (Wmax/2)/C seconds for
the Wmax/2 packets to be acknowledged. It then resumes
sending, and starts increasing its window size again.

The key to sizing the buffer is to make sure that the buffer
is large enough, so that while the sender pauses, the buffer
doesn’t go empty. When the sender first pauses at t1, the
buffer is full, and so it drains over a period B/C until t2
(shown in Figure 3). The buffer will just avoid going empty
if the first packet from the sender shows up at the buffer
just as it hits empty, i.e. (Wmax/2)/C ≤ B/C, or

B ≥ Wmax/2.

To determine Wmax, we consider the situation after the
sender has resumed transmission. The window size is now
Wmax/2, and the buffer is empty. The sender has to send
packets at rate C or the link will be underutilized. It is well
known that the sending rate of TCP is R = W/RTT Since
the buffer is empty, we have no queueing delay. Therefore,
to send at rate C we require that

C =
W

RTT
=

Wmax/2

2TP

or Wmax/2 = 2TP × C which for the buffer leads to the
well-known rule-of-thumb

B ≥ 2Tp × C = RTT × C.

While not widely known, similar arguments have been made
previously [9, 10], and our result can be easily verified using
ns2 [11] simulation and a closed-form analytical model [7]
Figure 4 illustrates the evolution of a single TCP Reno flow,
using the topology shown in Figure 2. The buffer size is
exactly equal to the rule-of-thumb, B = RTT × C. The
window size follows the familiar sawtooth pattern, increasing

steadily until a loss occurs and then halving the window size
before starting to increase steadily again. Notice that the
buffer occupancy almost hits zero once per packet loss, but
never stays empty. This is the behavior we want for the
bottleneck link to stay busy.

The appendix of the extended version of this paper [7]
presents an analytical fluid model that provides a closed-
form equation of the sawtooth, and closely matches the ns2
simulations.

Figures 5 and 6 show what happens if the link is under-
buffered or overbuffered. In Figure 5, the router is under-
buffered, and the buffer size is less than RTT × C. The
congestion window follows the same sawtooth pattern as in
the sufficiently buffered case. However, when the window
is halved and the sender pauses waiting for ACKs, there is
insufficient reserve in the buffer to keep the bottleneck link
busy. The buffer goes empty, the bottleneck link goes idle,
and we lose throughput.

On the other hand, Figure 6 shows a flow which is over-
buffered. It behaves like a correctly buffered flow in that it
fully utilizes the link. However, when the window is halved,
the buffer does not completely empty. The queueing delay
of the flows is increased by a constant, because the buffer
always has packets queued.

In summary, if B ≥ 2Tp×C = RTT ×C, the router buffer
(just) never goes empty, and the bottleneck link will never
go idle.

3. WHEN MANY LONG TCP FLOWS
SHARE A LINK

In a backbone router many flows share the bottleneck link
simultaneously, and so the single long-lived flow is not a real-
istic model. For example, a 2.5Gb/s (OC48c) link typically
carries over 10,000 flows at a time [4].4 So how should we
change our model to reflect the buffers required for a bot-
tleneck link with many flows? We will consider two situa-
tions. First, we will consider the case when all the flows are
synchronized with each other, and their sawtooths march
in lockstep perfectly in-phase. Then we will consider flows
that are not synchronized with each other, or are at least
not so synchronized as to be marching in lockstep. When
they are sufficiently desynchronized — and we will argue
that this is the case in practice — the amount of buffering
drops sharply.

3.1 Synchronized Long Flows
It is well-documented that if multiple TCP flows share

a bottleneck link, they can become synchronized with each
other [10, 12, 13]. They are coupled because they experience
packet drops at roughly the same time, and so their “saw-
tooths” become synchronized and in-phase. If a number of
flows share a bottleneck link, they each halve their window
size at the same time; and so the aggregate window process
(the sum of all the window size processes), looks like an am-
plified version of a single flow. As with a single flow, the
buffer needs to be as large as the distance from the peak to

4This shouldn’t be surprising: A typical user today is con-
nected via a 56kb/s modem, and a fully utilized 2.5Gb/s can
simultaneously carry over 40,000 such flows. When it’s not
fully utilized, the buffers are barely used, and the link isn’t
a bottleneck. So we should size the buffers for when there
are a large number of flows.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 9500 10000 10500 11000 11500 12000 12500

P
ro

ba
bi

lit
y

Packets

Buffer = 1000 pkts

Q = 0
link underutilized

Q > B
packets dropped

PDF of Aggregate Window
Normal Distribution N(11000,400)

Figure 7: The probability distribution of the sum of
the congestion windows of all flows passing through
a router and its approximation with a normal distri-
bution. The two vertical marks mark the boundaries
of where the number of outstanding packets fit into
the buffer. If sum of congestion windows is lower
and there are less packets outstanding, the link will
be underutilized. If it is higher the buffer overflows
and packets are dropped.

the trough of the aggregate window size process, which is
still equal to the bandwidth-delay product.

3.2 Desynchronized Long Flows
Flows are not synchronized in a backbone router carrying

thousands of flows with varying RTTs. Small variations in
RTT or processing time are sufficient to prevent synchro-
nization [14]; and the absence of synchronization has been
demonstrated in real networks [4, 15]. Likewise, we found
in our simulations and experiments that while in-phase syn-
chronization is common for under 100 concurrent flows, it is
very rare above 500 concurrent flows. 5 Although we don’t
precisely understand when and why synchronization of TCP
flows takes place, we have observed that for aggregates of
over 500 flows, the amount of in-phase synchronization de-
creases. Under such circumstances we can treat flows as
being not synchronized at all.

To understand the difference between adding synchronized
and desynchronized window size processes, recall that if we
add together many synchronized sawtooths, we get a sin-
gle large sawtooth, and the buffer size requirement doesn’t
change. If on the other hand the sawtooths are not syn-
chronized, the more flows we add, the less their sum will
look like a sawtooth; they will smooth each other out, and
the distance from the peak to the trough of the aggregate
window size will get smaller. Hence, given that we need as
much buffer as the distance from the peak to the trough
of the aggregate window size, we can expect the buffer size
requirements to get smaller as we increase the number of

5Some out-of-phase synchronization (where flows are syn-
chronized but scale down their window at different times
during a cycle) was visible in some ns2 simulations with up
to 1000 flows. However, the buffer requirements are very
similar for out-of-phase synchronization as they are for no
synchronization at all.

 10000

 10500

 11500

 12000

 50 52 54 56 58 60 62 64

time [seconds]

B
uf

fe
r

B

Sum of TCP Windows [pkts]
Router Queue [pkts]

Figure 8: Plot of
P

Wi(t) of all TCP flows, and of
the queue Q offset by 10500 packets.

flows. This is indeed the case, and we will explain why, and
then demonstrate via simulation.

Consider a set of TCP flows with random (and indepen-
dent) start times and propagation delays. We’ll assume that
they are desynchronized enough that the window size pro-
cesses are independent of each other. We can model the
total window size as a bounded random process made up of
the sum of these independent sawtooths. We know from the
central limit theorem that the aggregate window size process
will converge to a gaussian process. Figure 7 shows that in-
deed the aggregate window size does converge to a gaussian
process. The graph shows the probability distribution of the
sum of the congestion windows of all flows W =

P

Wi, with
different propagation times and start times as explained in
Section 5.1.

From the window size process, we know that the queue
occupancy at time t is

Q(t) =

n
X

i=1

Wi(t) − (2TP · C) − ε. (1)

In other words, all outstanding bytes are in the queue (Q(t)),
on the link (2Tp · C), or have been dropped. We represent
the number of dropped packets by ε. If the buffer is large
enough and TCP is operating correctly, then ε is negligible
compared to 2TP · C. Therefore, the distribution of Q(t) is
shown in Figure 8, and is given by

Q
d
= W − 2TP · C. (2)

Because W has a normal distribution, Q has the distribution
of a normal shifted by a constant (of course, the normal dis-
tribution is restricted to the allowable range for Q). This is
very useful, because we can now pick a buffer size and know
immediately the probability that the buffer will underflow
and lose throughput.

Because it is gaussian, we can determine the queue occu-
pancy process if we know its mean and variance. The mean
is simply the sum of the mean of its constituents. To find
the variance, we’ll assume for convenience that all sawtooths
have the same average value (having different values would
still yield the same results). Each TCP sawtooth can be
modelled as oscillating with a uniform distribution around

its average congestion window size W i, with minimum 2
3
W i

and maximum 4
3
W i. Since the standard deviation of the

uniform distribution is 1√
12

-th of its length, the standard

deviation of a single window size σWi
is thus

σWi
=

1√
12

„

4

3
W i −

2

3
W i

«

=
1

3
√

3
W i

From Equation (2),

W i =
W

n
=

2T p · C + Q

n
≤ 2T p · C + B

n
.

For a large number of flows, the standard deviation of the
sum of the windows, W , is given by

σW ≤
√

nσWi
,

and so by Equation (2) the standard deviation of Q(t) is

σQ = σW ≤ 1

3
√

3

2T p · C + B√
n

.

Now that we know the distribution of the queue occu-
pancy, we can approximate the link utilization for a given
buffer size. Whenever the queue size is below a threshold,
b, there is a risk (but not guaranteed) that the queue will
go empty, and we will lose link utilization. If we know the
probability that Q < b, then we have an upper bound on
the lost utilization. Because Q has a normal distribution,
we can use the error-function to evaluate this probability.
Therefore, we get the following lower bound for the utiliza-
tion.

Util ≥ erf

0

@

3
√

3

2
√

2

B
2T p·C+B

√
n

1

A . (3)

Here are some numerical examples of utilization, using n =
10000.

Router Buffer Size Utilization

B = 1 · 2T p·C
√

n
Util ≥ 98.99 %

B = 1.5 · 2T p·C
√

n
Util ≥ 99.99988 %

B = 2 · 2T p·C
√

n
Util ≥ 99.99997 %

This means that we can achieve full utilization with buffers
that are the delay-bandwidth product divided by square-
root of the number of flows, or a small multiple thereof. As
the number of flows through a router increases, the amount
of required buffer decreases.

This result has practical implications for building routers.
A core router currently has from 10,000 to over 100,000 flows
passing through it at any given time. While the vast ma-
jority of flows are short (e.g. flows with fewer than 100
packets), the flow length distribution is heavy tailed and
the majority of packets at any given time belong to long
flows. As a result, such a router would achieve close to full
utilization with buffer sizes that are only 1√

10000
= 1% of

the delay-bandwidth product. We will verify this result ex-
perimentally in Section 5.2.

4. SIZING THE ROUTER BUFFER FOR
SHORT FLOWS

Not all TCP flows are long-lived; in fact many flows last
only a few packets, never leave slow-start, and so never reach
their equilibrium sending rate [4]. Up until now we’ve only
considered long-lived TCP flows, and so now we’ll consider
how short TCP flows affect the size of the router buffer.
We’re going to find that short flows (TCP and non-TCP)
have a much smaller effect than long-lived TCP flows, par-
ticularly in a backbone router with a large number of flows.

We will define a short-lived flow to be a TCP flow that
never leaves slow-start (e.g. any flow with fewer than 90
packets, assuming a typical maximum window size of 65kB).
In Section 5.3 we will see that our results hold for short non-
TCP flows too (e.g. DNS queries, ICMP, etc.).

Consider again the topology in Figure 2 with multiple
senders on separate access links. As has been widely re-
ported from measurement, we assume that new short flows
arrive according to a Poisson process [16, 17]. In slow-start,
each flow first sends out two packets, then four, eight, six-
teen, etc. This is the slow-start algorithm in which the
sender increases the window-size by one packet for each re-
ceived ACK. If the access links have lower bandwidth than
the bottleneck link, the bursts are spread out and a single
burst causes no queueing. We assume the worst case where
access links have infinite speed, bursts arrive intact at the
bottleneck router.

We will model bursts arriving from many different short
flows at the bottleneck router. Some flows will be sending a
burst of two packets, while others might be sending a burst
of four, eight, or sixteen packets and so on. There will be a
distribution of burst-sizes; and if there is a very large num-
ber of flows, we can consider each burst to be independent
of the other bursts, even of the other bursts in the same
flow. In this simplified model, the arrival process of bursts
themselves (as opposed to the arrival of flows) can be as-
sumed to be Poisson. One might argue that the arrivals are
not Poisson as a burst is followed by another burst one RTT
later. However under a low load and with many flows, the
buffer will usually empty several times during one RTT and
is effectively “memoryless” at this time scale.

For instance, let’s assume we have arrivals of flows of a
fixed length l. Because of the doubling of the burst lengths
in each iteration of slow-start, each flow will arrive in n
bursts of size

Xi = {2, 4, ...2n−1, R},
where R is the remainder, R = l mod (2n − 1). Therefore,
the bursts arrive as a Poisson process, and their lengths
are i.i.d. random variables, equally distributed among
{2, 4, ...2n−1, R}.

The router buffer can now be modelled as a simple M/G/1
queue with a FIFO service discipline. In our case a “job” is
a burst of packets, and the job size is the number of packets
in a burst. The average number of jobs in an M/G/1 queue
is known to be (e.g. [18])

E[N] =
ρ

2(1 − ρ)
E[X2].

Here ρ is the load on the link (the ratio of the amount of
incoming traffic to the link capacity C), and E[X] and E[X2]
are the first two moments of the burst size. This model will
overestimate the queue length because bursts are processed

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
E

[Q
]

Length of TCP Flow [pkts]

 40 Mbit/s link
 80 Mbit/s link
200 Mbit/s link

M/G/1 Model

Figure 9: The average queue length as a function of
the flow length for ρ = 0.8. The bandwidth has no
impact on the buffer requirement. The upper bound
given by the M/G/1 model with infinite access link
speeds matches the simulation data closely.

packet-by-packet while in an M/G/1 queue the job is only
dequeued when the whole job has been processed. If the
queue is busy, it will overestimate the queue length by half
the average job size, and so

E[Q] =
ρ

2(1 − ρ)

E[X2]

E[X]
− ρ

E[X]

2

It is interesting to note that the average queue length is
independent of the number of flows and the bandwidth of
the link. It only depends on the load of the link and the
length of the flows.

We can validate our model by comparing it with simula-
tions. Figure 9 shows a plot of the average queue length for
a fixed load and varying flow lengths, generated using ns2.
Graphs for three different bottleneck link bandwidths (40, 80
and 200 Mb/s) are shown. The model predicts the relation-
ship very closely. Perhaps surprisingly, the average queue
length peaks when the probability of large bursts is highest,
not necessarily when the average burst size is highest. For
instance, flows of size 14 will generate a larger queue length
than flows of size 16. This is because a flow of 14 packets
generates bursts of Xi = {2, 4, 8} and the largest burst of
size 8 has a probability of 1

3
. A flow of 16 packets generates

bursts of sizes Xi = {2, 4, 8, 4}, where the maximum burst
length of 8 has a probability of 1

4
. As the model predicts,

the bandwidth has no effect on queue length, and the mea-
surements for 40, 80 and 200 Mb/s are almost identical. The
gap between model and simulation is due to the fact that the
access links before the bottleneck link space out the packets
of each burst. Slower access links would produce an even
smaller average queue length.

To determine the buffer size we need the probability dis-
tribution of the queue length, not just its average. This is
more difficult as no closed form result exists for a general
M/G/1 queue length distribution. Instead, we approximate
its tail using the effective bandwidth model [19], which tells
us that the queue length distribution is

P (Q ≥ b) = e
−b

2(1−ρ)
ρ

.
E[Xi]

E[X2
i
]

This equation is derived in the extended version on this pa-
per [7]

Our goal is to drop very few packets (if a short flow drops
a packet, the retransmission significantly increases the flow’s
duration). In other words, we want to choose a buffer size
B such that P (Q ≥ B) is small.

A key observation is that - for short flows - the size of
the buffer does not depend on the line-rate, the propagation
delay of the flows, or the number of flows; it only depends
on the load of the link, and length of the flows. Therefore, a
backbone router serving highly aggregated traffic needs the
same amount of buffering to absorb short-lived flows as a
router serving only a few clients. Furthermore, because our
analysis doesn’t depend on the dynamics of slow-start (only
on the burst-size distribution), it can be easily extended to
short unresponsive UDP flows.

In practice, buffers can be made even slower. For our
model and simulation we assumed access links that are faster
than the bottleneck link. There is evidence [4, 20] that
highly aggregated traffic from slow access links in some cases
can lead to bursts being smoothed out completely. In this
case individual packet arrivals are close to Poisson, result-
ing in even smaller buffers. The buffer size can be easily
computed with an M/D/1 model by setting Xi = 1.

In summary, short-lived flows require only small buffers.
When there is a mix of short- and long-lived flows, we will see
from simulations and experiments in the next section, that
the short-lived flows contribute very little to the buffering
requirements, and so the buffer size will usually be deter-
mined by the number of long-lived flows6.

5. SIMULATION AND EXPERIMENTAL
RESULTS

Up until now we’ve described only theoretical models of
long- and short-lived flows. We now present results to val-
idate our models. We use two validation methods: simu-
lation (using ns2), and a network of real Internet routers.
The simulations give us the most flexibility: they allow us to
explore a range of topologies, link speeds, numbers of flows
and traffic mixes. On the other hand, the experimental net-
work allows us to compare our results against a network
of real Internet routers and TCP sources (rather than the
idealized ones in ns2). It is less flexible and has a limited
number of routers and topologies. Our results are limited to
the finite number of different simulations and experiments
we can run, and we can’t prove that the results extend to
any router in the Internet [21]. And so in Section 5.3 we
examine the scope and limitations of our results, and what
further validation steps are needed.

Our goal is to persuade a network operator to test our
results by reducing the size of their router buffers by ap-
proximately 99%, and checking that the utilization and drop
rates don’t change noticeably. Until that time, we have to
rely on a more limited set of experiments.

5.1 NS2 Simulations
We ran over 15,000 ns2 simulations, each one simulating

several minutes of network traffic through a router to verify

6For a distribution of flows we define short flows and long
flows as flows that are in slow-start and congestion avoidance
mode respectively. This means that flows may transition
from short to long during their existence.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450 500

M
in

im
um

 r
eq

ui
re

d
bu

ffe
r

[p
kt

s]

Number of long-lived flows

98.0% Utilization
99.5% Utilization
99.9% Utilization
RTTxBW/sqrt(x)

2*RTTxBW/sqrt(x)

Figure 10: Minimum required buffer to achieve 98,
99.5 and 99.9 percent utilization for an OC3 (155
Mb/s) line with about 80ms average RTT measured
with ns2 for long-lived TCP flows.

our model over a range of possible settings. We limit our
simulations to cases where flows experience only one con-
gested link. Network operators usually run backbone links
at loads of 10%-30% and as a result packet drops are rare
in the Internet backbone. If a single point of congestion is
rare, then it is unlikely that a flow will encounter two or
more congestion points.

We assume that the router maintains a single FIFO queue,
and drops packets from the tail only when the queue is full
(i.e. the router does not use RED). Drop-tail is the most
widely deployed scheme today. We expect the results to
extend to RED, because our results rely on the desynchro-
nization of TCP flows — something that is more likely with
RED than with drop-tail. We used TCP Reno with a max-
imum advertised window size of at least 10000 bytes, and a
1500 or 1000 byte MTU. The average propagation delay of
a TCP flow varied from 25ms to 300ms.

5.1.1 Simulation Results for Long-lived TCP Flows
Figure 10 simulates an OC3 (155Mb/s) line carrying long-

lived TCP flows. The graph shows the minimum required
buffer for a given utilization of the line, and compares it with
the buffer size predicted by the model. For example, our

model predicts that for 98% utilization a buffer of RTT×C√
n

should be sufficient. When the number of long-lived flows
is small the flows are partially synchronized, and the result
doesn’t hold. However – and as can be seen in the graph
– when the number of flows exceeds 250, the model holds
well. We found that in order to attain 99.9% utilization, we
needed buffers twice as big; just as the model predicts.

We found similar results to hold over a wide range of
settings whenever there are a large number of flows, there
is little or no synchronization, and the average congestion
window is above two. If the average congestion window
is smaller than two, flows encounter frequent timeouts and
more buffering is required [22].

In our simulations and experiments we looked at three
other commonly used performance metrics, to see their
effect on buffer size:

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

M
in

im
um

 R
eq

ui
re

d
B

uf
fe

r

Length of TCP Flow [pkts]

 40 Mbit/s link
 80 Mbit/s link
200 Mbit/s link

M/G/1 Model p=0.01

Figure 11: The minimum required buffer that in-
creases the Average Flow Completion Time (AFCT)
by not more than 12.5% vs infinite buffers for short
flow traffic.

• Packet loss If we reduce buffer size, we can expect
packet loss to increase. The loss rate of a TCP flow is
a function of the flow’s window size and can be approx-
imated to l = 0.76

w2 (see [22]). The sum of the window
sizes is RTT × C + B. If B is made very small, then
the window size halves, increasing loss by a factor of
four. This is not necessarily a problem. TCP uses loss
as a useful signal to indicate congestion; and TCP’s
loss rate is very low (one packet per multiple round-
trip times). More importantly, as we show below, flows
complete sooner with smaller buffers than with large
buffers. One might argue that other applications that
do not use TCP are adversely affected by loss (e.g.
online gaming or media streaming), however these ap-
plications are typically even more sensitive to queueing
delay.

• Goodput While 100% utilization is achievable, good-
put is always below 100% because of retransmissions.
With increased loss, goodput is reduced, but by a very
small amount, as long as we have buffers equal or
greater than RTT×C√

n
.

• Fairness Small buffers reduce fairness among flows.
First, a smaller buffer means all flows have a smaller
round-trip time, and their sending rate is higher. With
large buffers, all round-trip times increase and so the
relative difference of rates will decrease. While over-
buffering would increase fairness, it also increases flow
completion times for all flows. A second effect is that
timeouts are more likely with small buffers. We did
not investigate how timeouts affect fairness in detail,
however in our ns2 simulations it seemed to be only
minimally affected by buffer size.

5.1.2 Short Flows
We will use the commonly used metric for short flows:

the flow completion time, defined as the time from when
the first packet is sent until the last packet reaches the des-
tination. In particular, we will measure the average flow

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400 450 500

M
in

im
um

 r
eq

ui
re

d
bu

ffe
r

[p
kt

s]

Number of long-lived flows

Minimum buffer for 95% utilization
 1 x RTT*BW/sqrt(n)
0.5 x RTT*BW/sqrt(n)

Figure 12: Buffer requirements for traffic mix with
different flow lengths, measured from a ns2 simula-
tion.

completion time (AFCT). We are interested in the tradeoff
between buffer size and AFCT. In general, for a link with a
load ρ ¿ 1, the AFCT is minimized when we have infinite
buffers, because there will be no packet drops and therefore
no retransmissions.

We take as a benchmark the AFCT with infinite buffers,
then find the increase in AFCT as a function of buffer size.
For example, Figure 11 shows the minimum required buffer
so that the AFCT is increased by no more than 12.5%. Ex-
perimental data is from ns2 experiments for 40, 80 and 200
Mb/s and a load of 0.8. Our model, with P (Q > B) = 0.025,
is plotted in the graph. The bound predicted by the M/G/1
model closely matches the simulation results.

The key result here is that the amount of buffering needed
does not depend on the number of flows, the bandwidth or
the round-trip time. It only depends on the load of the link
and the length of the bursts. For the same traffic mix of only
short flows, a future generation 1 Tb/s core router needs the
same amount of buffering as a local 10 Mb/s router today.

5.1.3 Mixes of Short- and Long-Lived Flows
In practice, routers transport a mix of short and long

flows; the exact distribution of flow lengths varies from net-
work to network, and over time. This makes it impossible
to measure every possible scenario, and so we give a gen-
eral idea of how the flow mix influences the buffer size. The
good news is that long flows dominate, and a buffer size of
RTT × C/

√
n will suffice when we have a large number of

flows. Better still, we’ll see that the AFCT for the short
flows is lower than if we used the usual rule-of-thumb.

In our experiments the short flows always slow-down the
long flows because of their more aggressive multiplicative
increase, causing the long flows to reduce their window-size.
Figures 12 and 13 show a mix of flows over a 400 Mb/s link.
The total bandwidth of all arriving short flows is about 80
Mb/s or 20% of the total capacity. The number of long flows
was varied from 1 to 500. During the time of the experiment,
these long flows attempted to take up all the bandwidth left
available by short flows. In practice, they never consumed
more than 80% of the bandwidth as the rest would be taken
by the more aggressive short flows.

As we expected, with a small number of flows, the flows

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

fo
r

a
14

 p
kt

 T
C

P
 fl

ow

Number of long-lived flows

AFCT of a 14 packet flow (RTT*BW Buffers)
AFCT of a 14 packet flow (RTT*BW/sqrt(n) Buffers)

Figure 13: Average flow completion times with a
buffer size of (RTT ×C)/

√
n, compared with a buffer

size RTT × C.

are partially synchronized. With more than 200 long-lived
flows, the synchronization has largely disappeared. The
graph shows that the long flows dominate the flow size.
If we want 95% utilization, then we need a buffer close to
RTT × C/

√
n. 7 This means we can ignore the short flows

when sizing the buffer. Of course, this doesn’t tell us how the
short-lived flows are faring — they might be shutout by the
long flows, and have increased AFCT. But Figure 13 shows
that this is not the case. In this ns2 simulation, the average
flow completion time is much shorter with RTT × C/

√
n

buffers than with RTT × C sized buffers. This is because
the queueing delay is lower. So by reducing the buffer size,
we can still achieve the 100% utilization and decrease the
completion times for shorter flows.

5.1.4 Pareto Distributed Flow Lengths
Real network traffic contains a broad range of flow lengths.

The flow length distribution is known to be heavy tailed
[4] and in our experiments we used Pareto distributions to
model it. As before, we define short flows to be those still
in slow start.

For Pareto distributed flows on a congested router (i.e.
ρ ≈ 1), the model holds and we can achieve close to 100%
throughput with buffers of a small multiple of (RTT ×
C)/

√
n.8 For example in an ns2 simulation of a 155 Mb/s

line, R̄TT ≈ 100ms) we measured 100-200 simultaneous
flows and achieved a utilization of 99% with a buffer of only
165 packets.

It has been pointed out [23] that in a network with low la-
tency, fast access links and no limit on the TCP window size,
there would be very few concurrent flows. In such a network,
a single very heavy flow could hog all the bandwidth for a
short period of time and then terminate. But this is un-
likely in practice, unless an operator allows a single user to
saturate their network. And so long as backbone networks
are orders of magnitude faster than access networks, few

7Here n is the number of active long flows at any given time,
not the total number of flows.
8The number of long flows n for sizing the buffer was found
by measuring the number of flows in congestion avoidance
mode at each instant and visually selecting a robust mini-
mum.

users will be able to saturate the backbone anyway. Even
if they could, TCP is not capable of utilizing a link quickly
due to its additive increase behavior above a certain window
size. Traffic transported by high-speed routers on commer-
cial networks today [4, 24] has 10’s of 1000’s of concurrent
flows and we believe this is unlikely to change in the future.

An uncongested router (i.e. ρ ¿ 1) can be modeled using
the short-flow model presented in section 4 which often leads
to even lower buffer requirements. Such small buffers may
penalize very long flows as they will be forced into congestion
avoidance early even though bandwidth is still available. If
we want to allow a single flow to take up to 1/n of the
bandwidth, we always need buffers of (RTT ×C)/

√
n, even

at a low link utilization.
We found that our general result holds for different flow

length distributions if at least 10% of the traffic is from long
flows. Otherwise, short flow effects sometimes dominate.
Measurements on commercial networks [4] suggest that over
90% of the traffic is from long flows. It seems safe to as-
sume that long flows drive buffer requirements in backbone
routers.

5.2 Measurements on a Physical Router
While simulation captures most characteristics or router-

TCP interaction, we verified our model by running experi-
ments on a real backbone router with traffic generated by
real TCP sources.

The router was a Cisco GSR 12410 [25] with a 4 x OC3
POS“Engine 0”line card that switches IP packets using POS
(PPP over Sonet) at 155Mb/s. The router has both input
and output queues, although no input queueing took place
in our experiments, as the total throughput of the router
was far below the maximum capacity of the switching fabric.
TCP traffic was generated using the Harpoon traffic genera-
tor [26] on Linux and BSD machines, and aggregated using
a second Cisco GSR 12410 router with Gigabit Ethernet line
cards. Utilization measurements were done using SNMP on
the receiving end, and compared to Netflow records [27].

TCP Router Buffer Link Utilization (%)
Flows RTT×BW√

n
Pkts RAM Model Sim. Exp.

100 0.5 x 64 1 Mbit 96.9% 94.7% 94.9%
100 1 x 129 2 Mbit 99.9% 99.3% 98.1%
100 2 x 258 4 Mbit 100% 99.9% 99.8%
100 3 x 387 8 Mbit 100% 99.8% 99.7%
200 0.5 x 46 1 Mbit 98.8% 97.0% 98.6%
200 1 x 91 2 Mbit 99.9% 99.2% 99.7%
200 2 x 182 4 Mbit 100% 99.8% 99.8%
200 3 x 273 4 Mbit 100% 100% 99.8%
300 0.5 x 37 512 kb 99.5% 98.6% 99.6%
300 1 x 74 1 Mbit 100% 99.3% 99.8%
300 2 x 148 2 Mbit 100% 99.9% 99.8%
300 3 x 222 4 Mbit 100% 100% 100%
400 0.5 x 32 512 kb 99.7% 99.2% 99.5%
400 1 x 64 1 Mbit 100% 99.8% 100%
400 2 x 128 2 Mbit 100% 100% 100%
400 3 x 192 4 Mbit 100% 100% 99.9%

Figure 14: Comparison of our model, ns2 simulation
and experimental results for buffer requirements of
a Cisco GSR 12410 OC3 linecard.

5.2.1 Long Flows
Figure 14 shows the results of measurements from the

GSR 12410 router. The router memory was adjusted by
limiting the length of the interface queue on the outgoing

interface. The buffer size is given as a multiple of RTT×C√
n

,

the number of packets and the size of the RAM device that
would be needed. We subtracted the size of the internal
FIFO on the line-card (see Section 5.2.2). Model is the lower-
bound on the utilization predicted by the model. Sim. and
Exp. are the utilization as measured by a simulation with
ns2 and on the physical router respectively. For 100 and 200
flows there is, as we expect, some synchronization. Above
that the model predicts the utilization correctly within the
measurement accuracy of about ±0.1%. ns2 sometimes pre-
dicts a lower utilization than we found in practice. We at-
tribute this to more synchronization between flows in the
simulations than in the real network.

The key result here is that model, simulation and experi-
ment all agree that a router buffer should have a size equal

to approximately RTT×C√
n

, as opposed to RTT × C (which

in this case would be 1291 packets).

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

P
(Q

 >
 x

)

Queue length [pkts]

FIFO

Q < 0link underutilized

Exp. Cisco GSR if-queue
Exp. Cisco GSR buffers

Model M/G/1 PS
Model M/G/1 FIFO

Figure 15: Experimental, Simulation and Model
prediction of a router’s queue occupancy for a Cisco
GSR 12410 router.

5.2.2 Short Flows
In Section 4 we used an M/G/1 model to predict the buffer

size we would need for short-lived, bursty TCP flows. To
verify our model, we generated lots of short-lived flows and
measured the probability distribution of the queue length of
the GSR 12410 router. Figure 15 shows the results and the
comparison with the model, which match remarkably well.9

5.3 Scope of our Results and Future Work
The results we present in this paper assume only a single

point of congestion on a flow’s path. We don’t believe our

9The results match very closely if we assume the router
under-reports the queue length by 43 packets. We learned
from the manufacturer that the line-card has an undocu-
mented 128kByte transmit FIFO. In our setup, 64 kBytes
are used to queue packets in an internal FIFO which, with
an MTU of 1500 bytes, accounts exactly for the 43 packet
difference.

results would change much if a percentage of the flows ex-
perienced congestion on multiple links, however we have not
investigated this. A single point of congestion means there
is no reverse path congestion, which would likely have an
effect on TCP-buffer interactions [28]. With these assump-
tions, our simplified network topology is fairly general. In
an arbitrary network, flows may pass through other routers
before and after the bottleneck link. However, as we assume
only a single point of congestion, no packet loss and little
traffic shaping will occur on previous links in the network.

We focus on TCP as it is the main traffic type on the
internet today. Constant rate UDP sources (e.g. online
games) or single packet sources with Poisson arrivals (e.g.
DNS) can be modelled using our short flow model and the
results for mixes of flows still hold. But to understand traffic
composed mostly of non-TCP packets would require further
study.

Our model assumes there is no upper bound on the con-
gestion window. In reality, TCP implementations have max-
imum window sizes as low as 6 packets [29]. Window sizes
above 64kByte require use of a scaling option [30] which
is rarely used. Our results still hold as flows with limited
window sizes require even smaller router buffers [1].

We did run some simulations using Random Early De-
tection [12] and this had an effect on flow synchronization
for a small number of flows. Aggregates of a large number
(> 500) of flows with varying RTTs are not synchronized
and RED tends to have little or no effect on buffer require-
ments. However early drop can slightly increase the required
buffer since it uses buffers less efficiently.

There was no visible impact of varying the latency other
than its direct effect of varying the bandwidth-delay prod-
uct.

Congestion can also be caused by denial of service (DOS)
that attempt to flood hosts or routers with large amounts
of network traffic. Understanding how to make routers ro-
bust against DOS attacks is beyond the scope of this paper,
however we did not find any direct benefit of larger buffers
for resistance to DOS attacks.

6. RELATED WORK
Villamizar and Song report the RTT × BW rule in [1],

in which the authors measure link utilization of a 40 Mb/s
network with 1, 4 and 8 long-lived TCP flows for different
buffer sizes. They find that for FIFO dropping discipline and
very large maximum advertised TCP congestion windows it
is necessary to have buffers of RTT×C to guarantee full link
utilization. We reproduced their results using ns2 and can
confirm them for the same setup. With such a small number
of flows, and large congestion windows, the flows are almost
fully synchronized and have the same buffer requirement as
a single flow.

Morris [31] investigates buffer requirements for up to 1500
long-lived flows over a link of 10 Mb/s with 25ms latency.
He concludes that the minimum amount of buffering needed
is a small multiple of the number of flows, and points out
that for a bandwidth-delay product of 217 packets, each flow
has only a fraction of a packet in transit at any time. Many
flows are in timeout, which adversely effects utilization and
fairness. We repeated the experiment in ns2 and obtained
similar results. However for a typical router used by a car-
rier or ISP, this has limited implications. Users with fast
access links will need several packets outstanding to achieve

adequate performance. Users with very slow access links
(e.g. 32kb/s modem users or 9.6kb/s GSM mobile access)
need additional buffers in the network so they have sufficient
packets outstanding. However this additional buffer should
be at the ends of the access link, e.g. the modem bank at the
local ISP, or GSM gateway of a cellular carrier. We believe
that overbuffering the core router that serves different users
would be the wrong approach, as overbuffering increases la-
tency for everyone and is also difficult to implement at high
line-rates. Instead the access devices that serve slow, last-
mile access links of under 1Mb/s should continue to include
a few packets worth of buffering for each link.

Avrachenkov et al [32] present a fixed point model for
utilization (for long flows) and flow completion times (for
short flows). They model short flows using an M/M/1/K
model that only accounts for flows but not for bursts. In
their long flow model they use an analytical model of TCP
that is affected by the buffer through the RTT. As the model
requires fixed point iteration to calculate values for specific
settings and only one simulation result is given, we can not
directly compare their results with ours.

Garetto and Towsley [33] describe a model for queue
lengths in routers with a load below one that is similar to
our model in section 4. The key difference is that the au-
thors model bursts as batch arrivals in an M [k]/M/1 model
(as opposed to our model that models bursts by varying
the job length in a M/G/1 model). It accommodates both
slow-start and congestion avoidance mode, however it lacks
a closed form solution. In the end the authors obtain queue
distributions that are very similar to ours.

7. CONCLUSION
We believe that the buffers in backbone routers are much

larger than they need to be — possibly by two orders of
magnitude. If our results are right, they have consequences
for the design of backbone routers. While we have evidence
that buffers can be made smaller, we haven’t tested the hy-
pothesis in a real operational network. It is a little difficult
to persuade the operator of a functioning, profitable network
to take the risk and remove 99% of their buffers. But that
has to be the next step, and we see the results presented in
this paper as a first step towards persuading an operator to
try it.

If an operator verifies our results, or at least demonstrates
that much smaller buffers work fine, it still remains to per-
suade the manufacturers of routers to build routers with
fewer buffers. In the short-term, this is difficult too. In
a competitive market-place, it is not obvious that a router
vendor would feel comfortable building a router with 1% of
the buffers of its competitors. For historical reasons, the net-
work operator is likely to buy the router with larger buffers,
even if they are unnecessary.

Eventually, if routers continue to be built using the current
rule-of-thumb, it will become very difficult to build linecards
from commercial memory chips. And so in the end, necessity
may force buffers to be smaller. At least, if our results are
true, we know the routers will continue to work just fine,
and the network utilization is unlikely to be affected.

8. ACKNOWLEDGMENTS
The authors would like to thank Joel Sommers and Profes-

sor Paul Barford from the University of Wisconsin-Madison

for setting up and running the measurements on a physical
router in their WAIL testbed; and Sally Floyd and Frank
Kelly for useful disucssions. Matthew Holliman’s feedback
on long flows led to the central limit theorem argument.

9. REFERENCES
[1] C. Villamizar and C. Song. High performance tcp in

ansnet. ACM Computer Communications Review,
24(5):45–60, 1994 1994.

[2] Cisco line cards.
http://www.cisco.com/en/US/products/hw/modules/
ps2710/products data sheets list.html.

[3] R. Bush and D. Meyer. RFC 3439: Some internet
architectural guidelines and philosophy, December
2003.

[4] C. J. Fraleigh. Provisioning Internet Backbone
Networks to Support Latency Sensitive Applications.
PhD thesis, Stanford University, Department of
Electrical Engineering, June 2002.

[5] D. Ferguson. [e2e] Queue size of routers. Posting to
the end-to-end mailing list, January 21, 2003.

[6] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and
J. C. Doyle. Dynamics of tcp/red and a scalable
control. In Proceedings of IEEE INFOCOM 2002, New
York, USA, June 2002.

[7] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
router buffers. Technical Report
TR04-HPNG-06-08-00, Stanford University, June
2004. Extended version of the paper published at
SIGCOMM 2004.

[8] S. Iyer, R. R. Kompella, and N. McKeown. Analysis of
a memory architecture for fast packet buffers. In
Proceedings of IEEE High Performance Switching and
Routing, Dallas, Texas, May 2001.

[9] C. Dovrolis. [e2e] Queue size of routers. Posting to the
end-to-end mailing list, January 17, 2003.

[10] S. Shenker, L. Zhang, and D. Clark. Some
observations on the dynamics of a congestion control
algorithm. ACM Computer Communications Review,
pages 30–39, Oct 1990.

[11] The network simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[12] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, 1993.

[13] L. Zhang and D. D. Clark. Oscillating behaviour of
network traffic: A case study simulation.
Internetworking: Research and Experience, 1:101–112,
1990.

[14] L. Qiu, Y. Zhang, and S. Keshav. Understanding the
performance of many tcp flows. Comput. Networks,
37(3-4):277–306, 2001.

[15] G. Iannaccone, M. May, and C. Diot. Aggregate traffic
performance with active queue management and drop
from tail. SIGCOMM Comput. Commun. Rev.,
31(3):4–13, 2001.

[16] V. Paxson and S. Floyd. Wide area traffic: the failure
of Poisson modeling. IEEE/ACM Transactions on
Networking, 3(3):226–244, 1995.

[17] A. Feldmann, A. C. Gilbert, and W. Willinger. Data
networks as cascades: Investigating the multifractal
nature of internet WAN traffic. In SIGCOMM, pages
42–55, 1998.

[18] R. W. Wolff. Stochastic Modelling and the Theory of
Queues, chapter 8. Prentice Hall, October 1989.

[19] F. P. Kelly. Notes on Effective Bandwidth, pages
141–168. Oxford University Press, 1996.

[20] J. Cao, W. Cleveland, D. Lin, and D. Sun. Internet
traffic tends to poisson and independent as the load
increases. Technical report, Bell Labs, 2001.

[21] S. Floyd and V. Paxson. Difficulties in simulating the
internet. IEEE/ACM Transactions on Networking,
February 2001.

[22] R. Morris. Scalable tcp congestion control. In
Proceedings of IEEE INFOCOM 2000, Tel Aviv, USA,
March 2000.

[23] S. B. Fredj, T. Bonald, A. Proutière, G. Régnié, and
J. Roberts. Statistical bandwidth sharing: a study of
congestion at flow level. In Proceedings of SIGCOMM
2001, San Diego, USA, August 2001.

[24] Personal communication with stanford networking on
characteristics of residential traffic.

[25] Cisco 12000 series routers.
http://www.cisco.com/en/US/products/hw/
routers/ps167/.

[26] J. Sommers, H. Kim, and P. Barford. Harpoon: A
flow-level traffic generator for router and network test.
In Proceedings of ACM SIGMETRICS, 2004. (to
appear).

[27] I. Cisco Systems. Netflow services solution guido, July
2001. http://www.cisco.com/.

[28] L. Zhang, S. Shenker, and D. D. Clark. Observations
on the dynamics of a congestion control algorithm:
The effects of two-way traffic. In Proceedings of ACM
SIGCOMM, pages 133–147, September 1991.

[29] Microsoft. Tcp/ip and nbt configuration parameters
for windows xp. Microsoft Knowledge Base Article -
314053, November 4, 2003.

[30] K. McCloghrie and M. T. Rose. RFC 1213:
Management information base for network
management of TCP/IP-based internets:MIB-II,
March 1991. Status: STANDARD.

[31] R. Morris. Tcp behavior with many flows. In
Proceedings of the IEEE International Conference on
Network Protocols, Atlanta, Georgia, October 1997.

[32] K. Avrachenkov, U. Ayesta, E. Altman, P. Nain, and
C. Barakat. The effect of router buffer size on the tcp
performance. In Proceedings of the LONIIS Workshop
on Telecommunication Networks and Teletraffic
Theory, pages 116–121, St.Petersburg, Russia, Januar
2002.

[33] M. Garetto and D. Towsley. Modeling, simulation and
measurements of queueing delay under long-tail
internet traffic. In Proceedings of SIGMETRICS 2003,
San Diego, USA, June 2003.

