Exact GPS Simulation with Logarithmic Complexity, and its
Application to an Optimally Fair Scheduler

Paolo Valente
Dipartimento di Ingegneria dell’Informazione
Via Diotisalvi, 2
Universita di Pisa, Italy

paolo.valente@iet.unipi.it

ABSTRACT

Generalized Processor Sharing (GPS) is a fluid scheduling pol-
icy providing perfect fairness. The minimum deviation (lead/lag)
with respect to the GPS service achievable by a packet scheduler
is one packet size. To the best of our knowledge, the only packet
scheduler guaranteeing such minimum deviation is Worst-case Fair
Weighted Fair Queueing (WF2Q), that requires on-line GPS simu-
lation. Existing algorithms to perform GPS simulation have O(N)
complexity per packet transmission (/V being the number of com-
peting flows). Hence WF2Q has been charged for O(IV) complex-
ity too. Schedulers with lower complexity have been devised, but at
the price of at least O(IV) deviation from the GPS service, which
has been shown to be detrimental for real-time adaptive applica-
tions and feedback based applications. Furthermore, it has been
proven that the lower bound complexity to guarantee O(1) devi-
ation is (log N), yet a scheduler achieving such result has re-
mained elusive so far.

In this paper we present an algorithm that performs exact GPS
simulation with O(log N) worst-case complexity and small con-
stants. As such it improves the complexity of all the packet sched-
ulers based on GPS simulation. In particular, using our algorithm
within WF2Q, we achieve the minimum deviation from the GPS
service with O(log N) complexity, thus matching the aforemen-
tioned lower bound. Furthermore, we assess the effectiveness of
the proposed solution by simulating real-world scenarios.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and problem Complexity]: Non-
numerical Algorithms and Problems; C.2.6 [Computer Commu-
nication Networks]: Internetworking

General Terms

Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’04, Aug. 30-Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

Keywords

Computational Complexity, Packet Scheduling, Quality of Service,
Data Structures

1. INTRODUCTION

Given a set of IV flows, defined in whatever meaningful way and
sharing a common link, packet scheduling algorithms play a critical
role in providing each flow a predictable service.

An important reference system in packet scheduling is the GPS
(Generalized Processor Sharing) server [1]. Provided that each flow
has a weight assigned to it, such system serves all flows simultane-
ously, delivering each one a service rate proportional to its weight.
The GPS service discipline is not realistic: a practical system can
serve only a limited number of packets at a time (in this paper we
consider only systems that can serve at most one packet at a time).
Nevertheless, because of its perfectly fair allocation, the GPS ser-
vice discipline is used as a reference model for evaluating the prop-
erties of more practical schedulers.

It is easy to prove that the fairness of a packet scheduler depends
on its maximum deviation (lead/lag) with respect to the service
delivered by the GPS server. In particular, O(NN) deviation im-
plies O(IN) (un)fairness, whereas O(1) deviation guarantees O(1)
(un)fairness (recall that, in practical networks, the number of flows
can be in the tens of thousands, or more).

Furthermore, as shown in [3] and [5], a scheduler with O(NV)
deviation with respect to the GPS service may provide a bursty ser-
vice: a bursting period, during which up to O(IN) packets belong-
ing to the same flow are served back-to-back, can be followed by
a silence period — with length equal to the preceding bursting pe-
riod — during which no packet of the the flow is served. It has
been shown that this oscillation of service rates adversely affects
adaptive real time applications [20] (such as video streaming), and
results in instability in case of feedback based applications [3, 5]
(such as congestion control).

Hence, in the rest of this paper, we will use the maximum devi-
ation with respect to the GPS service as a measure of the fairness
and the smoothness of the service provided by a scheduler.

Since packet transmission is atomic, no packet scheduling algo-
rithm can avoid a minimum deviation, equal to one maximum size
packet, between the amount of service provided to each flow by the
real system and the amount of service provided to the same flow by
the GPS server. We say that the service delivered by a real system
(thanks to the scheduling policy used) is optimum, if the discrep-
ancy with respect to the GPS service never exceeds the minimum
deviation. Finally, it has been proven that the lower bound com-
plexity to guarantee O(1) deviation with respect to the GPS service
is Q(log N) [13].

A very accurate packet scheduling algorithm, called Worst-case
Fair Weighted Fair Queueing (WF2Q) [3] and based on the real-
time simulation of a GPS server, does achieve the optimum service.
Unfortunately, to date, the best implementations of the GPS simula-
tion [1, 15] may require processing O(IV) events in a single packet
transmission time [9]. As the number of flows can become very
large, such complexity is widely considered a significant barrier to
on-line scheduling in high speed applications [20, 9, 6, 5, 10, 11].

Many scheduling algorithms with O(log V) complexity — such
as Self Clocked Fair Queueing (SCFQ) [9], Frame Based Fair Que-
ueing (FFQ) [6] and Start Time Fair Queueing [10] — perform an
approximated simulation of a GPS server, trading accuracy for com-
plexity. Unfortunately, all them exhibit O(IN) deviation with re-
spect to the GPS service.

A more accurate algorithm, called Worst-case Fair Weighted Fair
Queueing Plus (WF2Q+) [5], has been proposed to reduce the im-
plementation complexity of WF2Q while retaining several of its
properties (a similar, but not identical, algorithm was proposed in
[7]). WE2Q+ has O(1) deviation from the minimum amount of ser-
vice guaranteed to each flow by a GPS server. However, WF?Q+
provides no guarantee on the maximum deviation from the actual
service delivered by the GPS server when some flows are idle. As
we will show in Subsection 3.1, in such a case, also WF2Q+ can
exhibit O(IN) deviation and provide a bursty service.

Finally, several schedulers with very low complexity (ranging
from O(1) to O(loglog N)) have been proposed to achieve high
efficiency in high speed applications [11, 8, 12, 19], but all them
exhibit O(N) or, worse yet, unbounded deviation with respect to
the GPS service. In the end, even though the lower bound complex-
ity to guarantee the optimum service was proven to be Q(log N)
[13], the problem of providing O(1) deviation from fair service
with sub-linear complexity was still open.

Contributions of this paper

In this paper we propose an algorithm for simulating a GPS server,
called Logarithmic-GPS (L-GPS) and based on a specially aug-
mented balanced binary tree. Such tree allows the state of the simu-
lated GPS server to be computed with O(log IN) complexity at any
time instant. Furthermore, it must be updated only at each packet
arrival, and at O(log N) cost.

Actually, the complexity of the operations depends on the depth
of the tree, that can in turn be implemented by augmenting two dif-
ferent types of balanced binary trees: Patricia Trees [16], that guar-
antee O(log V) average depth, or Red-black Trees [17], that guar-
antee O(log V) worst-case depth. Especially, even though Patricia
Trees provide a weaker theoretical complexity bound, they have a
much simpler structure and they allow L-GPS to be implemented in
a more efficient way than Red-black Trees. Thus, as we will show
through simulations, they achieve very good performance in practi-
cal cases. In the end, depending on the specific balanced tree used,
L-GPS enables the GPS service to be simulated with O(log N) —
statistical or deterministic — complexity with respect to any time
interval, e.g. single packet transmission time.

Furthermore, we will show how to use L-GPS to implement
WF2Q with O(log N) complexity and small constants. Hereafter
such implementation will be referred to as Logarithmic-WF2Q (L-
WF2Q). At our best knowledge, L-WF2Q is the first scheduler with
O(log N) complexity achieving O(1) deviation (actually, the min-
imum deviation) with respect to the GPS service.

From a theoretical point of view, the contribution of this paper
is twofold. i) We reduce the upper bound complexity for simulat-
ing a GPS server with respect to the best result in the literature.
ii) By implementing WF2Q with O(log N) complexity, we reduce

Lax Maximum packet length

bi Weight of the 5 — th flow
®(t) = ZjeB(t) ¢; | Sum of thf‘, weights of the flows back-
logged at time ¢

S;i(t), Fi(t), U;(t) | Virtual start/finish/unbacking time of the
i —th flow at time ¢

Quantities related to a generic node of the Ugree:
Extremes of the time interval

represented by the

tmin > tmaz

[tmin, tmam]

node
Umina Uma:c Umzn = V(tmzn)a Umacc = V(tmacc)
Ad AP =d(th,,) — @t ..)
AW Correction factor to use in (6) and com-
puted as in (7)

Table 1: Notations used in this paper.

also the upper bound complexity to provide the optimum service.
Moreover, since §(log) is the lower bound complexity to guar-
antee O(1) deviation from the GPS service [13], L-WF?Q achieves
the optimum service with optimum complexity.

From a practical point of view, we reduce the complexity of a
scheduler, WF2Q, that provides a very smooth service, suitable for
real time adaptive applications (such as video streaming) and feed-
back based applications (such as congestion control).

Organization of this paper

This paper is organized as follows. In Section 2 we provide an
overview of GPS and WF2Q. In Section 3 we make a brief survey
of related work, focusing especially on WE2Q+. In Section 4 we
present our main result, the L-GPS algorithm, whereas in Section
5 we discuss how it can be implemented with two classes of bal-
anced trees. In Section 6 we describe L-WF2Q. In Section 7 we
show through simulations how the actual complexity of L-GPS
and L-WF?Q compares to the worst-case bound.

2. GPS AND WF2Q

Consider a system in which NV flows (defined in whatever mean-
ingful way) share a common link with time varying capacity R(t).
We say that a packet has arrived in the system when its last bit has
arrived in the system, we call packet arrival time the time at which
this happens. Similarly, we say that a packet departs from the sys-
tem when its last bit is transmitted by the system, and we call packet
finish time the time at which this happens. We define as backlogged
every flow owning packets not yet (completely) transmitted. Each
flow has a packet FIFO queue associated with it, holding the flow
own backlog.

We define system busy period a maximal interval of time during
which the system is never idle. At the end of a system busy period
we can safely reinitialize the state of the system. Therefore, each
time a system busy period is considered, without loss of generality,
we assume it begins at time 0. Finally, most of the notations used
in this paper are summarized in Table 1.

Each flow 4 has a positive number ¢; assigned to it, namely its
weight. A GPS server [1] is an ideal system that serves all back-
logged flows simultaneously, providing each of them a share of the
output link capacity (i.e. ratio between the service rate provided to
the flow and the link capacity), proportional to its weight.

In formulas:

dw (t) = éi dW (t) Vie B(t) (1)

dwi(t) = Pi 30

ZjeB(t) ;

where dW (t) = R(t)-dt is the total amount of service provided by
the system in [¢, ¢ + dt], dW;(¢) is the amount of service received
by the i—th flow in [¢, t+dt] (W (0) = 0 and W;(0) = 0Vi), B(t)
is the set of the flows backlogged at time ¢, ®(¢) = ZjeB(t) @; is
the sum of the weights of the flows backlogged at time ¢.

Given the packet arrival pattern and the output link capacity of a
real system, WF2Q [3] is based on the real-time simulation of the
corresponding GPS server, i.e. a GPS server with the same arrival
pattern and the same capacity of the real system. Especially, WF>Q
implements the following scheduling policy: at each time instant
t in which the link is ready to transmit the next packet, choose,
among all the packets that have already started service in the cor-
responding GPS (eligible packets), the next one that finishes in the
corresponding GPS server, if no packet arrives after time ¢.

A practical way for implementing such policy in case of vari-
able rate links is based on timestamping packets with the values
assumed by the following function, called (GPS) system vir-
tual time [5]:

¢
1
t) = ——dW (r 2
V= [gimave @
From (1), we have that dV'(t) = %",“) Vi € B(t), i.e. the system
virtual time measures the normalized amount of service received
by each backlogged flow. Each packet p¥ (k — th packet of i — th
flow, in order of arrival times) is associated with a packet virtual
start time S¥ and a packet virtual finish time FF. S¥ is the value
assumed by the system virtual time when the corresponding GPS
server starts servicing p¥, and FF is the value assumed by the sys-
tem virtual time when the corresponding GPS server finishes ser-
vicing p¥. Suppose p¥ arrives at time aF and its length is equal to
L% then its timestamps can be computed as follows [5]:

S; = max(V(a;), F{™")

At every time, only the packets at the head of the queues of back-
logged flows can be chosen for transmission, hence, as suggested
in [5], it is possible to schedule packets on a per-flow basis, and to
maintain only a couple of timestamps each flow i, called, respec-
tively, flow ¢ virtual start time S;(¢) and flow ¢ virtual finish time
Fi(t), and corresponding to the virtual start and finish time of the
packet at the head of the queue of flow ¢ at time ¢. Since the system
virtual time is an increasing function of time, it is easy to verify
that the packet at the head of the ¢ — th flow is eligible at time ¢ if
and only if its virtual start time is no greater than V'(t), hence we
say that a flow ¢ is eligible at time ¢ if and only if S;(t) < V(¢).
We can now define WF2Q as follows:

DEFINITION 1. Each time the link is ready to transmit the next
packet, WF2Q picks the packet at the head of the queue of the eli-
gible flow with the smallest virtual finish time.

The maximum per-flow deviation with respect to the corresponding
GPS server guaranteed by WE?Q is equal to the maximum packet
length Limaz [3] (WF2Q delivers the optimum service). The com-
putational complexity of WF2Q is due to two major tasks: main-
taining the set of eligible flows sorted by virtual finish times, and
computing the value of the system virtual time. As shown in [4],
it is possible to maintain the eligible flows sorted by virtual finish

Flow 1(1) Packet arrivals /A
Flow 2(1) p%
Flow 3(2) o
10ll 20 23 39 t
GPS B
Service
11 23 25 1o t
38
39
a5 VO C
2
2(|> . System

Virtual time

11 23 35 t
38
39
wrQ D
Service
30 35 [[40 t

Figure 1: The evolution of the system virtual time.

times at O(log V) cost per packet arrival or departure. Computing
the system virtual time is instead complicated by the fact that its
slope can change O(IV) times during a single packet transmission,
as shown in the following example.

EXAMPLE 1. Consider a link with capacity of one byte per time
unit. Fig. 1.A depicts a possible packet arrival pattern in such a
system, Fig. 1.B shows the service delivered by the corresponding
GPS server, Fig. 1.C shows the evolution of the system virtual time,
Fig. 1.D shows the service provided by WF?Q. Flows 1 and 2 have
weight 1, while flow 3 has weight 2. Each arriving packet is de-
picted as a rectangle: the projection on the x axis of its left corner
represents the packet arrival time, while the length of the base rep-
resents the time needed to serve the packet at full link speed.

As shown in Fig. 1.C, system virtual time is a piecewise linear func-
tion of the total amount of service W (¢) delivered by the system.
At each time ¢, the slope of V (t) against W (t) is inversely pro-
portional to the sum of the weights of the backlogged flows (see
(2)). Hereafter we will use the term slope, as a short for the slope
of V(t) against W (t). Whenever B(t) changes, the slope of V (¢)
changes, constituting a breakpoint in its piecewise linear form. We
define break instant every time instant £ in which the slope changes
(e.g. time 23 in Fig. 1.C), and break value the value assumed by
the system virtual time at time £.

Suppose to compute V (tre) at a generic time instant ty,¢q,, and
consider the largest break instant ¢; < 4, and the value 'I>(tl+)
assumed by ®(t) immediately after ¢;: the slope is constant and
equal to ﬁl) during (1, tnew], hence, according to (2)
W(tnew) - W(tl)

o(t")

The classical algorithm [1] for simulating a GPS server was de-
fined for a constant rate server. In case of variable rate servers
it can be generalized as follows: by using (4), update three state
variables at each break instant ¢;, assigning them to the tu-
ple < V(¢;), @(t}'_), W (t;) >. As a consequence, at a generic

V(tnew) = V(H1) + @)

time instant £,¢, in which a scheduler based on the GPS simulation
may need to know V (tnew), the state variables contain the tuple
< V(t), ®(t]), W(t:) > corresponding to the largest break in-
stant t; < tnew. Hence (4) can be immediately applied to compute
14 (tnew) .

In [15] it is shown how an early algorithm proposed in [14] can
be used to compute the virtual time without updating the state vari-
ables at each break instant. Suppose that, at the time instant £ ,eq,
in which V (frew) is to be computed, the state variables contain the
tuple < V(to1a), ®(t},,;), W (to1a) > corresponding to a time in-
stant to1q < 1, whereas all the packets arrived during (to1d, tnew)
are stored both in a queue ordered by packet arrival times, and in
a queue ordered by packet (real) finish times in the corresponding
GPS server. Using such information, the algorithm proposed in
[14] can reconstruct all the breakpoints of the virtual time function
in (fo1d, tnew), update the state variables to the tuple < V(t;),
®(t1), W(t;) > and, hence, compute V (tnew) using (4). The
number of steps performed by such algorithm is equal to the num-
ber of break instants in (¢o1d, tnew)-

Breakpoints frequency depends on the frequency of transition
of flows in and out of the set B(t). Since in a GPS server the
flows are served simultaneously, packet finish times can be arbi-
trarily slightly skewed. In the worst case, O(IN) finish times could
fall in an arbitrarily small time interval. This could happen even if
the packet arrival rate is bounded to O(1) packets per time unit. For
example, in Fig. 1.A packet arrival times are spaced by time inter-
vals longer than the minimum packet service time (10 time units).
Nevertheless, the slope of the system virtual time changes O(N)
times during the service of p3 (Fig. 1.D). For this reason, the com-
plexity of the existing algorithms for simulating a GPS server is
O(N) per packet transmission time.

3. RELATED WORK

The two main issues related to the GPS service discipline are
how to accurately approximate it on a real system, and how to effi-
ciently compute the system virtual time.

To the best of our knowledge, apart from the initial O(NV) im-
plementation proposed in [1], the computation of the system virtual
time has been investigated in just one work [15], where it has been
proven that maintaining the GPS virtual time has Q(log N) amor-
tized per-packet complexity and that there is an algorithm [14] in
the literature that matches such lower bound. Unfortunately, as the
same authors of [15] show, such algorithm has O(NN) worst-case
complexity per packet transmission time.

With regard to the relation between the service provided by prac-
tical packet schedulers and the GPS service discipline, several low
complexity scheduling algorithms [19, 11, 8, 9, 6, 10, 5] have been
proposed to solve (efficiently) the fairness problem and, in general,
to provide service guarantees. As shown in the introduction, among
them, WE2Q+ [5] is the only candidate for providing O(1) devia-
tion with respect to the GPS service. Unfortunately, we will show in
the next subsection that also WEF2Q+ exhibits O(IV) deviation and
provides a bursty service when not all the flows are backlogged.

As a conclusion, to date, all packet scheduling algorithms, except
for WF?Q, exhibit O(IV) deviation with respect to the GPS service,
or, worse yet, do not guarantee any bound on such deviation.

3.1 WEF2Q+ unfairness and burstiness
WF2Q+ implements the same packet timestamping (3) and packet
selection policy (Def. 1) of WF2Q, but it uses a different system

Example for N=10 Packet timestamps
Flow N ;2 \ [™]

Flows N/2+1, N/242, .., N-1 are idle

Flow N/2
Flow 2
Flow 1
N+2 N+2 N N+2
D 273= 25 V)
Link capacity GPS service
N2
Lo 5 n,
Packets p! p4 ..., p,/ are served simultaneously N t
Link capacity WEF2Q service
1 1 2 1 N2 1
) P, Pl PN Pz - P plw
N t

Link capacity WEF2Q+ service

| le p] 1

.. .. D

Figure 2: WF2Q+ unfairness and bursty service.

virtual time function [5]:

Vi 24 (t+7) = max{Vyy, p2 o () +W (¢, t+7), {rtin){Si (t+7)}}
i€B(t+7

(&)
where W (¢, t + 7) is the total amount of service provided by the
system during the period [t, t + 7], B(t + 7) is the set of flows
backlogged in the real system at time ¢ + 7, and, without losing
generality, vazl ¢; = 1 is assumed to hold. Thanks to this sim-
pler function, WF2Q+ has logarithmic complexity in the number of
flows.

The minimum slope of Viy g2 (t) is equal to 1, i.e the slope of
Vaps(t) when all the flows are backlogged (recall that Zf;l ¢ =
1). It has been shown in [5] that, thanks to such property, WF2Q+
achieves the minimum deviation with respect to the minimum ser-
vice guaranteed by the GPS server to each flow. For this reasons,
WF?Q+ has the same performance of WF2Q on several fairness
indexes, such as the Worst-case Fair Index [3], that measures the
minimum amount of service guaranteed by a scheduler to any flow
over any time interval. But, what happens if not all the flows are
continuously backlogged? Depending on the values of the weights
of the flows, the slope of Vi g2 (t) can result to be arbitrarily
smaller than the slope of Vgps(t).

Consider a system with [V flows, the first % with weight % -C,
the remaining % with weight 1 - C, where the normalization factor

C = NL+2 guarantees that vazl ¢; = 1 holds. Flows 1, 2, %
and flow N are persistently backlogged, while the other flows are
always idle. All packets have the same length and the outgoing
link has capacity of 1 packet per time unit. The upper part of Fig. 2
shows the virtual start and finish timestamps of the packets of the
backlogged flows, whereas the bottom one shows the service pro-
vided, respectively, by the GPS, WF2Q and WF2Q+ scheduling
policies (the evolution of the system is periodic). We see that in the
short term (the first % + 1 packet transmissions), WF2Q+ delivers
O(N) times less service to flow N than GPS or WF>Q.

The ultimate reason for this is the following: since the virtual
start time of the first packet of each of the first % flows is 0, then,

until all such packets have been transmitted, min, - (t){Si(t)} is

stuck at 0, and, hence, Vyy p2g4 (t) grows with slope 1 (see (5)).

Hence the second packet of flow IV is not eligible before time %

On the contrary, after time #, a burst of % — 1 packets of flow

N is transmitted.

4. L-GPS

In this section we will concentrate on the GPS simulation effort,
and we will consider the following pair of systems: a real system
and the corresponding GPS server (the GPS server for short). Here-
after we use the term virtual time assuming we are referring to the
GPS system virtual time. We say that a flow is backlogged/idle if
it is backlogged/idle in the GPS server, independently of its state in
the real system. We define as total backlog at time t the sum of the
backlogs of all the flows in the GPS server at time ¢, and we call po-
tential clearing time at time ¢ the time instant {¢ > ¢ in which the
total backlog will be cleared if no packet arrives after time ¢. We
use the notation f(t~) and f(t*) to refer to the values assumed
by a generic function f immediately before/after the time instant ¢.
Finally, we define the tuple < V'(t), ®(t), W (t) > as the state
of the GPS server corresponding to the time instant ¢, and we say
computing the state of the GPS server as a short for computing all
the values of such tuple.

In the rest of this section, we will always refer to the problem
of computing V (¢,e) at a given time instant £pe,, provided that
W (t) is known at any time instant ¢ < fpew. We will show that
L-GPS solves this problem with O(log N) complexity, by using
an ad hoc data structure that must be updated only at each packet
arrival, and at O(log V) cost.

L-GPS stores the state of the GPS server in three variables we
will refer to as the base tuple. As previously shown, the state of
the GPS server can change O(INV) times in an arbitrarily short time
interval, but certainly it is not used so often by a practical scheduler
based on the simulation of a GPS server. For example, WFZQ uses
it only on each packet arrival (to timestamp the packet), and on each
packet departure from the real system (to choose the next eligible
packet to transmit). Basing upon this observation, L-GPS does not
update the base tuple at each break instant, but only on packet ar-
rivals. When V (fnew) is to be computed, L-GPS reconstructs the
evolution of the virtual time during (¢o14, tnew] With an approach
similar to the one used in [15], and shown at the end of Section 2.
But, whereas in [15] the information on the events (packet arrivals
and departures) occurred during (to1d, tnew) are somehow stored
into two queues and they must all be processed sequentially, L-GPS
stores them in a specially augmented binary tree, called Uyyee, and
process them in groups (possibly of O(N) events) by navigating
such tree.

Before providing the formal description of the data structure and
the algorithm, we introduce them from an intuitive point of view.
The main idea behind the construction of the Uy, e 1S pre-computing
the expected evolution of the virtual time.

We say that a point (¢, V(f)), with £ > t, is a potential break-
point at time ¢ if it will constitute a breakpoint if no packet arrives
after time ¢; furthermore, we say that £ is a potential break instant
at time ¢, and that V (%) is a potential break value at time . Poten-
tial breakpoints are due only to flows becoming idle: if we define,
for each flow 1, the flow virtual unbacking time U; (t) as the virtual
finish time of the last packet of the ¢ — th flow arrived up to time
t, then the potential break values at time ¢ correspond to the virtual
unbacking times of the flows backlogged at time ¢. Flows virtual
unbacking times can be easily computed/updated at each packet ar-
rival, and there is no need to update them on packet departures.

V(© Vit,)]| 0
" D(tl) 1
Wt,a)| O
L2
S B
00t =l 20 t Usas| 20
AD|-1
tora L2 \Aw| o)
4 +
L YO Vit,] 11
” (e 2
W(t,..)

TR D R
30
Lo L1
4 H
L2 R2
4 %)
Vitad)| 17
22\ V() P(tl)| 4
1 Wi(t,.)| 23
20 PO
17 [22)
[a® -2-2=—4 |
— 5wty (AW 1+0+(22-21) *2=3)
L= 1 R1
Unax 21) (U..]22
tor PO A® “lol=—2) A2
' —_— AW [(21-20) *1=1
AW| 0
Ll R1 L2 R2
+ — N AR
Unax| 20 Unax| 21
L2 R2 AP -1 AP -1
+ 4 4
AW| 0 AwW| 0

Figure 3: Expected virtual evolution and shape data structure
after the arrival of each of the first three packets in Example 1.

To see how the expected evolution of the virtual time can be pre-
computed, consider the upper part of Fig. 3.A.1. With reference to
Example 1, it shows the expected evolution of the virtual time after
the arrival of p} at time 0, assuming that no further packet arrives.
Especially, ®(07) = ¢1, whereas there is just one potential break-
point — corresponding to the potential clearing time — whose break
value is equal to U1 (01) = FY. Furthermore, on such breakpoint,
®(t) varies by a quantity A® = —¢;. Hence all the information
on the expected evolution of the virtual time after p} arrival can be
computed when such packet arrives, except for the potential clear-
ing time, that is hard to compute in advance in case of variable rate
links. On the contrary, the amount of service provided by the sys-
tem on the clearing time does not depend on the capacity of the
link, and it is equal to the length of pi.

Actually, since the slope of V' (t) against W (t) depends only on
®(t) (see (2)), it is easy to understand that the expected evolution
of the virtual time as a function of the service provided by the sys-
tem is independent of the capacity of the link, and it changes only
in consequence of packet arrivals. Fig. 3.A.1 shows also the time
instant 11 in which a new packet, p%, will arrive.

Since the system is causal, i.e. packets arriving after time ¢ can
not change the evolution of the system before ¢, the actual evolu-
tion of the virtual time during [0, 11] coincides with the expected
evolution computed at p! arrival. Hence, the information on the
time interval [0, 11] computed on pi arrival can be used to com-
pute the state of the GPS server when p} arrives. Especially, the
knowledge of the state of the GPS server at time 0 is enough to
compute V' (11) by applying (4).

After the arrival of p3, the expected evolution from time 11 chan-

ges in the following way (upper part of Fig. 3.B.1) with respect to
the one computed on pi arrival: ®(117) = ¢14¢2, and there is
one more potential breakpoint, whose corresponding break value is
equal to U2(11%) = F3 . Furthermore, ®(t) varies by a quantity
A® = —¢p2 on the corresponding break instant. The amount of
service provided by the system on each of the two potential break
instants can be computed as a function of the service rate received
by each flow, and of the fraction of p! not yet completed upon p3
arrival.

When pj arrives, the information on the expected evolution com-
puted on p3 arrival can be used to compute the state of the GPS
server, and to update the expected evolution of the virtual time as
done on p} arrival. The new expected evolution is depicted in the
upper part of Fig. 3.C.1.

In the end, if t¢ is the potential clearing time at time ¢, then
the expected evolution of the virtual time at time ¢, as a func-
tion of the service provided by the system during [toq, tc], is
completely known if the state of the GPS server corresponding to
toiq < tis known, and, for every actual and potential break instant
t; included in (014, tc], V(¢5). the variation of the weight sum
AP = @(t;’) — ®(t;), and W (#;) are known. Obviously, the
expected and the actual evolution during (¢,.4, t] coincide.

L-GPS stores the information on the expected evolution of the
virtual time as a function of the service provided by the system in
the base tuple and in the Uiree. Hence the Uygree must be updated
only on each packet arrival. The Ugree does not contain any in-
formation on the values of the break instants, and L-GPS does not
rely on their knowledge to compute V (tne.). However, in what
follows we will mention break instants to simplify the description
of the algorithm.

The Utree contains one leaf for each of the (actual or potential)
break instants included in (¢014, tc], and each leaf stores the value
of the virtual time, and the variation of the weight sum on the break
instant it represents. If each leaf stored also the amount of service
provided by the system on the break instant, O(NV) leaves may need
to be updated on each packet arrival, because the arrival of a packet
at time ¢ causes the amount of service provided by the system on
every potential break instant at time ¢ to change. For this reason, the
information on the service provided by the system on each break
instant are not stored in the leaves, but in the internal nodes.

The way in which such information are coded is the basis of
the two key features of the Uiree: 1) the Uiree can be updated at
O(log N) cost at each packet arrival (as we will show in the last
subsection), ii) each node stores aggregate information on the time
interval ranging from the smallest break instant ¢,,s», to the largest
break instant ¢,,4. represented by the leaves of its subtree, and such
information allow the state of the GPS server corresponding to the
time instant ¢,,45 to be computed at O(1) cost, provided that the
state of the GPS server corresponding to a time instant t1 < tmin
such that there is no break instant between ¢1 and ¢, is known.

As we will show in Subsection 4.2, L-GPS exploits such property
to compute V (tnew): first, it computes the state of the GPS server
corresponding to the largest break instant ¢; < t¢. by performing
a binary search [17] of the leaf representing it: before beginning
the search, L-GPS initializes three temporary variables to the values
contained in the base tuple; then, each time a new node is visited,
it uses the aggregate information stored in such node to update the
temporary variables to the state of the GPS server corresponding to
the largest time instant represented in the subtree rooted at the node.
When the target leaf is reached, the temporary variables contain
the tuple < V'(#), ®(¢;), W(t;) >. Finally, L-GPS computes
V (tnew) by applying (4). Hence the number of steps performed to
compute V (tney) is equal to the depth of the Uyyee-

V()

V(L) | I 2G9)
- : ; by
W) Wit,..) W(t,..) W(t)
D (1) (Une = V(L))
Wi(ty, tay) —AW

Figure 4: Graphical interpretation of AW

Since the Uyree is balanced, and, as we will show in the last sub-
section, it is possible to bound the maximum number of leaves of
the Ugree to N, L-GPS computes V (tpew) with O(log N) com-
plexity. In the following two subsections we will describe, respec-
tively, the data structure and the algorithm used by L-GPS to com-
pute V (tnew), Whereas, in the last subsection we will show how
such data structure is updated upon each packet arrival.

4.1 The shape data structure
L-GPS computes V (tnew) through the following data structure:

DEFINITION 2. We define shape data structure the union of a
base tuple that stores, at any time instant t, the state of the GPS
server corresponding to a time instant to1q < t, and a balanced
binary tree, called Usree and containing one leaf for each (actual
or potential) break instant included in (toiq, tc], where tc is the
potential clearing time at time t. Each node of the Uiy represents
a time interval [tmin, tmaz], where tmin and tmaz are the smallest
and the largest time instant represented in the subtree rooted at the
node (leaves represent time intervals of length 0). Furthermore:

1) the time interval represented by the left child of a node pre-
cedes the time interval represented by the right child;

2) each node stores the following information — all evaluated as-
suming that no packet arrives after time t: the break value Uz =
V (tmaz), the difference A® = ®(t},.) —®(t,..), and, finally, a
correction factor AW such that, if there is no break instant between
a time instant t1 < tmin and tmin

W (t1, tmaz) = ®(t7) - (Umaz — V(t1)) — AW (6)

where W (t1, tmaz) is the expected amount of total service de-
livered by the system during the period [t1, tmaz]. For a leaf,
tmin = tmaz = tj, Unae = V(t;), A® = &(t]) — &(t;),
and AW is obviously 0.

The graphical interpretation of AW is shown in Fig. 4. AW
depends only on the information stored in the subtree rooted at the
node, and it is independent of ®(t1), as stated by the following
theorem.

THEOREM 1. For any internal node P of a Uipee
AWE = AWE + AWE — A®" - (UE,, — Ukhes) (D
where L is the left child of node P, and R is the right one.

The proof of the theorem can be found in the Appendix. Figures
3.A.2,3.B.2 and 3.C.2 show three instances of the shape data struc-
ture representing the expected evolutions of the virtual time de-
picted at their left side. The fields Unmaz and A® in the leaves of
the Uiree can be computed at each packet arrival in the way ex-
plained in the previous subsection, whereas, in case of an internal

node, Unmas is equal to the value of the corresponding field in its
right child, A® is equal to the sum of the corresponding fields in
its children, and AW is computed according to Th. 1.

Eq. (6) has a simple graphical interpretation: the bottom parts
of Figures 3.A.1, 3.B.1 and 3.C.1 show the time intervals (possibly
of size 0) represented by each node of the Utree; the subintervals
— gaps — of [toiq, tc] not covered by the nodes of the Uiy are
represented by dotted lines. With reference to Fig. 3.C.1, there
is a gap both between t,;4 and any of the leftmost time intervals
represented by some node of the Uiree, and between every pair of
time intervals represented by two sibling nodes.

Consider then a gap and one of the consecutive time intervals
[tmin, tmax] represented by the nodes of the Ugree, €.g. the gap
[23, 35] and the time interval represented by the node L1. If V'(¢1)
and ®(t]") are known for a generic time instant ¢ belonging to the
gap (extremes included), then (6) allows us to compute the amount
of service W (t1, tmaz) delivered by the system during [t1, tmaz]
at O(1) cost. Hence, if we know also W (¢1), we can compute
W (tmaz) at O(1) cost. Furthermore, V (tmaz) = Umae and, since
Ot) = (t]), ®(tmae) = ®(t]) + A®. Hence, through the
information stored in the node, we can compute the state of the
GPS server corresponding to the time instant ¢,,4, at O(1) cost.

For example, consider Fig. 3.C.2: since the base tuple < V (¢o14),
<I>(t3'ld), W (to1a) > is known, the fields UL, AW ™" and A®™!
of the node L1 allows us to compute the tuple < V (t55,), S(tELT)
W (tLLe) > at O(1) cost.

In case tmaz i a potential break instant at time tnew (tmaz >
tnew), the state of the GPS server computed using Upnaz, AP and
AW is the expected state at time tmaz if no packet arrives after
time tpew -

We will describe in detail how the shape data structure is updated
at each packet arrival in the last subsection, whereas we will show
how the Uiree can be implemented by augmenting existing types
of balanced trees in Section 5.

4.2 Computing Virtual Time

In this subsection we will show how L-GPS computes V (tnew)
at O(log N) cost through the shape data structure.

The algorithm is implemented by the function computev, whose
pseudocode is shown in Fig. 5. computeV takes as input W (tnew)
and performs a binary search of the leaf representing the largest
break instant t; < tpeq.

During the search, computeV updates three temporary variables,
initially set to the tuple < V(towa), ®(t},;), W(tora) >. Upon
each search step, it chooses as pivor the largest time instant ¢~ in
the time interval represented by the left child L of the node involved
in the current search step. In case the search continues on the right
subtree, the temporary variables are set to < V (t2,,), ®(tht,),
W (tiaz) >.

The temporary variables have a noteworthy property: upon each
search step they contain the tuple corresponding to the time instant
at the beginning of the gap that precedes the time interval repre-
sented by the left child L of the node involved in the current search
step, hence they allows the values W (t%,q,) and ®(t5,,) to be
computed at O(1) cost (lines 19-20 and 29).

As previously said, computing break instants in case of variable
rate links is a hard task. Hence the break instant used as pivot at
each search step is compared against ¢ e indirectly, by exploiting
the following property: since the system is work-conserving, W (t)
is an increasing function of time, hence the ordering between any
break instant ¢; represented by the Ugree and tneqw is the same as
between W (t;) and W (tnew).

Finally, to prove that the search ends up storing the tuple

)

1 // shape data structure:

2 V_old; // V(t_old)

3 mW_old; // W(t_old)

4 Phi_old; // Phi(t_old +)

5 Utree ; // Def. 2

6

7 function computeV(W_new) // returns V(t_new)
8 |

9 // next three variab. will store V(t_1), W(t_1),

10 // Phi(t_1 +) at the end of the search (Eq.
11 W_s = W_old;

12 V_s = V_old;

13 Phi_s = Phi_old;

(4))

14 cur = Utree.root ; // curr. search subtree
15

16 // at each search step we have:

17 // W_s [left gap] [left interval] W_L_max [right gap] [right interval]
18 while (not is_leaf (cur)) { // search W(t_1)
19 W_IL Max= W_s + (cur->left->Umax - V_s)*Phi_s -

20 cur->d_W; // pivot: see (6)
21

22 if (W_new < W_IL Max) // => W(t_1) < pivot

23 cur = cur->left ; // cont. in left subtree

24 else { // => W(t_1) >= pivot

25 cur = cur->right ; // cont. in right subtree
26 // update variables to the begin. of next gap

27 V_s = cur->left->Umax ;

28 W_s=W_L Max ;

29 Phi_s=Phi_s + Cur.left.d _Phi;

30 } // end of case t_1 >= pivot
31 } // end of search loop

32

33 return V_s+ (W_new-W_s) / Phi_s; // Eq. (4)
34 }

Figure 5: Function computeV.

< V(t), ®(t}"), W(t:) > in the temporary variables, consider
that: 1) the Ujree is assumed to represent all the break instants
included in (fo1d4, tc] (we will show in the next subsection how
this is accomplished); 2) since the system is causal, the information
stored in the base tuple as well as the information stored in the
nodes of the Uyre. that represent time intervals that precede ¢ e do
not change if new packets arrive after ¢, ; hence all the the values
stored in the temporary variables during the search are actual and
not expected values; 3) tpew < tc.

Therefore, it is easy to understand that the search will stop on the
leaf representing the smallest (potential) break instant no greater
than t,e. , and that, at such point, the temporary variables will con-
tain the tuple < V'(#;), ®(t;"), W () >.

Since a level of the Uy,ee is descended upon each iteration, the
search terminates after a number of iterations no greater than the
depth of the Ugree. Since we assumed that the Uyree is balanced
and, as we will show in the next subsection, it never contains more
than N leaves, the function computev has O(log N) complexity.

4.3 Handling the shape data structure

In this subsection we will show how the shape data structure
is updated on each packet arrival at O(log) cost. All the issues
related to the underlying balanced tree used to implement the Uyyee
are the subject of the next section.

The shape data structure is handled by just two functions, add-
break_point and rem_break_point (shown in Fig. 6). Apart
from the current value of the virtual time (used for removing stale
breakpoints, as we will show), add_break_point takes as argu-
ments the break value U of the breakpoint to add, and the variation
d_phi of ®(t) on such breakpoint.

When the arrival of a packet causes a flow to become back-
logged attime t, add_break_point must be invoked twice: to add
the (actual) breakpoint corresponding to the flow becoming back-

bubble_up (P) { // update aggr. info from node P
while (is_not_null(P)) {
P->Umax = P->right->Umax ;
P->d_Phi = P->left->d_Phi + P->right->d_Phi ;
P->d W = P->left->d_W + P->right->d_W —
(P->right->Umax — P->left->Umax) *P->left->d_Phi;
P = P->father ; // move up one level

}

W J oUW N

9 1}

11 // add a brkpoint to the shape data str.; in: V(t),
12 // break value U, and weight sum variation d_Phi

13 function add_break_point (curr_V, U, d_phi) {

14 // next function returns the newly

15 // created or just updated leaf

16 leaf = bal_tree_insert (Utree, U, d_phi) ;

17 bubble_up (leaf->father) ; // update aggr. info

18 bal_tree_ins_fixup(leaf->father) ; // rebal. tree
19

20 if (Utree.leftmost_leaf->U<= curr_V) // stale brk
21 rem_break_point (Utree.leftmost_leaf) ;

22 return leaf ;

23}

24

25 // removes a brkpoint from the shape data structure
26 rem_break_point (leaf) { // in: leaf to remove
27 if (leaf == Utree.leftmost_leaf) {

28 // Removing leftmost leaf, update base tuple:
29 W_old += Phi_old * (leaf->Umin - V_old) -

30 cur->d_W ; // Eq. (6)
31 Phi_old= Phi_old+ leaf->d_Phi ;

32 V_old = leaf->Umin ;

33 }

34 // next function removes the leaf and replaces

35 // leaf->father with the brother of the leaf

36 brother = bal_tree_remove (Utree, leaf) ;

37 bubble_up (brother->father) ; // update aggr. info
38 bal_tree_rem_ fixup(leaf) ; // rebalance tree

Figure 6: Functions add_break_point, rem break point
and bubble_up.

logged, and the potential breakpoint corresponding to the potential
break instant in which the flow becomes idle if no packet arrives
after time ¢. On the first invocation, we assign the virtual start time
of the just arrived packet to U and the weight of the flow to d_phi
(®(t) increases by the weight of the flow); on the second invoca-
tion, we assign the virtual unbacking time of the flow (equal to the
virtual finish time of the packet) to U and the opposite of the weight
of the flow to d_phi.

On the contrary, if the packet causes the virtual unbacking time
of an already backlogged flow to move forward, rem_breakpoint
must be called to remove the old breakpoint, hence add_break—
point must be called to insert the new one (passing to it the new
value of the virtual unbacking time of the flow and the opposite of
the weight of the flow).

By doing so, the Uy,ee represents, at any time instant ¢, all the
(actual and potential) break instants larger than £,;4 and due to
the packets arrived up to time t. Furthermore, since the system
is causal, the actual break instants represented by the Uy,e at time
t coincide with the only actual break instants in (¢o14, t].

add_break_point calls the function bal_tree_insert that
descends the tree looking for a leaf containing the break value U.
On success, bal_tree_insert adds d_phi to the value stored in
the field A® of the leaf (a further flow becomes idle/backlogged at
the break instant represented by the leaf); otherwise it creates both a
new leaf containing the tuple < U, dppi, 0 >, and an internal node
whose children are the newly created leaf and the last leaf visited
during the search; hence it replaces the last leaf visited during the
search with the newly created internal node.

bal_tree_insert guarantees that each internal node of the
Ustree has exactly two children (an internal node with just one child
would represent the same time interval represented by its child).

bal_tree_insert does not deal with the aggregate informa-
tion stored in the nodes, that are instead updated by the function
bubble_up. All the information stored in an internal node of the
Utree depend only on the information stored in the subtree rooted
at that node. Hence, if the information stored in a node change,
only its ancestors must be updated. Therefore, bubble_up updates
only the nodes along the path from the input node to the root of the
Utree. The expressions used to update Umaz, AP and AW comes
from Def. 2 and Th. 1.

In order to preserve balancing, some types of balanced trees need
a fix up after the insertion of a node. This is accomplished by
the function bal_tree_ins_fixup whose code — as the one of
bal_tree_insert —depends on the specific underlying balanced
tree and will be described in the next section.

It is easy to understand that the complexity of the functions bal-
tree_insert and bubble_up is O(d), where d is the depth of the
Utree. We will show that also the complexity of bal_tree_ins-
fixup is O(d) in the next section.

After having inserted a new leaf and having updated the aggre-
gate information, add_break_point checks if the leftmost leaf
of the Uy, represents a stale breakpoint (i.e. a breakpoint whose
corresponding break value is no greater than the current value of
the virtual time). If this is the case, add_break_point invokes
rem_break_point to remove such leaf and to update the base tu-
ple consistently.

Hence, on the one hand add_break_point does not increase
the depth of the Uyiree in case the removal of a stale breakpoint
can be performed. On the other hand, when such removal can not
be performed, there is actually no stale breakpoint in the Uiree.
In such a case, the Uyree contains only potential breakpoints, that,
in turn, are due only to flows becoming idle. A flow can cause
more than one breakpoint during any time interval only if the flow
becomes idle and then backlogged again at least once during such
time interval. Therefore, when the Uy, does not contain any stale
breakpoint, it is representing a time interval containing at most one
break instant per flow.

In the end, since there are N flows in the system and the Utree
is balanced, the depth of the Uy,ee never exceeds O(log N), and
add_break_point has O(log N) complexity.

The same comments done so far forbal_tree_insert, bal-
tree_rem_fixup and add_break point apply also
to bal_tree_remove, bal_tree_rem_ fixup and rem_break-
point (also briefly commented in Fig. 6).

S. BALANCED TREES

The actual performance of L-GPS depends on the depth of the
augmented balanced tree used to implement the Uyyee. In the fol-
lowing two subsections we will show two classes of balanced trees
suitable for implementing the Uy,ee: Patricia Trees, that guaran-
tee balancing by a statistical point of view, and Red Black Trees,
that guarantee deterministic balancing. We will also see that Pa-
tricia Trees do not need any fix up after insertions/extractions, and
allow entire subtrees to be removed in O(1) steps, which further
improves the performance of L-GPS.

Finally, in practical systems, timestamps are represented by a
finite number of bits: in the last subsection we will show how to
handle wraparound problems.

5.1 Statistical balancing: Patricia Trees

Instead of the ordering between labels, a search tree can be or-
ganized as a function of the labels representation as a sequence of
digits. This is the main idea behind tries [16], a well know (and
very studied) technique for storing and retrieving data. A common
method to decrease the number of nodes in a trie is using a path
compression method, known as Patricia compression [16]. A bi-
nary Digital Patricia Tree (DTree for short) containing /N values is
a binary tree in which each leaf is labelled with the binary repre-
sentation of each value (there is one leaf per value), whereas each
internal node is labelled with the common prefix of the labels of all
the leaves stored in the subtree rooted at such node.

The Uiree can be implemented as an augmented DTree in which
each leaf is labelled with the binary representation of the break
value it contains, and each internal node is labelled with the com-
mon prefix of all the break values stored in its subtree. If we imag-
ine to add such prefix to each internal node, then Figures 3.A.2,
3.B.2 and 3.C.2 turn out to show three Uy,ee implemented as aug-
mented DTrees.

The form of a DTree depends only on the values it contains, and
it is independent of the order in which they are inserted. If M is
the number of binary digits used to represent the values stored in
a DTree, the maximum depth of the DTree is equal to M. Fur-
thermore, consider a DTree containing /V independent random val-
ues from a distribution with any density function f(z) such that
f f?(x)dx < oo; the expected average depth of such DTree is
O(log N) [16, 18].

Thus, bal_tree_insert and bal_tree_remove have
O(log N) complexity in practical cases, and they are quite effi-
cient, because each elementary step is based on simple bit-compari-
sons. Finally, it is easy to understand that bal_tree_ins_fixup
and bal_tree_rem_ fixup are empty functions.

DTrees allow a further optimization. Let node L be the root of
a subtree to remove, node P be the father of such node, and node
R be the other child of node P. If node R would be the only child
of node P, their labels would coincide. Hence, the removal of the
subtree rooted at node L can be achieved by simply substituting
node R in place of node P, whereas each node of such subtree can
be easily recycled by inserting node L in a list of free trees, i.e. a
list whose elements are root nodes of trees removed from the Uy, ee.
Whenever a new node must be added to the Uyree and the list is not
empty, such node is recycled from the head Z of the list. If node Z
has further free children, they are inserted as the first and the second
element of the list. The cost of insertions into and extractions from
the list is, obviously, O(1).

Consider the function computeV: if the left subtree of the node
involved in the current search step is removed from the Ui, each
time the binary search continues in the right subtree, then all the
stale breakpoints are pruned from the Uy, each time the new value
of the virtual time is computed (aggregate information can be eas-
ily updated at the end of the search by invoking bubble_up and
passing to it the last node visited).

In Section 7 we will show that, when a DTree is used to imple-
ment L-GPS in a real system, also its maximum depth is O(log N)
and it has small constants.

5.2 Deterministic balancing: Red-black Trees

As shown in the previous subsection, DTrees have O(log N)
depth in practical cases. Anyway, if the depth of a DTree bumps
up to the number of bits in the node labels in some pathological
cases, then a Red-black Tree can be used instead [17].

Red-black Trees are balanced search trees based on comparisons
between keys. Each node is labelled with one of the K values con-

3 Right-Rotate (y) g
° ¥ Left-Rotate (x) o o

a 8 B v

Figure 7: The rotation operations performed by the fix up func-
tions in a Red-black Tree. The letters o, 3 and -y represent ar-
bitrary subtrees.

tained in the tree; furthermore, all the labels in the subtree rooted
at the left/right child of a node are smaller/larger than the label of
such node. Two special fix up functions, invoked, respectively, after
each insertion or extraction, guarantee that the maximum depth of a
Red-black Tree containing K nodes is equal to [2 - log,(K + 1)]
[17]. Furthermore, such operations have logarithmic complexity
with small constants [17].

The Uiree can be implemented as an augmented Red-black Tree
in which each leaf is labelled with the break value it contains, and
each internal node is labelled with the maximum break value stored
in the leaves of its left subtree. Since a binary tree with IV leaves
has 2 - N — 1 nodes, the worst-case depth guaranteed by the under-
lying Red-black Tree for the Uyyree is equal to [2 - (1 + log, N)].

Finally,bal_tree_ins_fixupandbal_ tree_rem_ fixupcan
be obtained with minor modifications to the fix up functions shown
at pages 268 and 274 of [17]. The only critical operations per-
formed by such functions are the two rotations shown in Fig. 7:
each rotation does not affect the aggregate information stored in
the parent node P and in the root nodes of the subtrees ¢, 8 and 7.
Hence the original functions need to be modified so as to apply the
inner part of the while loop in bubble_up (Fig. 6, lines 3-6) only
to the nodes x and y after each rotation.

5.3 Handling wraparound

All the scheduling algorithms based on packet timestamping and
comparison must face the problem of the wraparound. In practi-
cal systems, the virtual time can be represented as n bits positive
integer numbers (or fixed point numbers). Using modular arith-
metic, values can be compared without ambiguity even in case of
wra;iaround, provided that the difference between them is less than
277

As shown in Sec. 2, the maximum deviation of WF2Q with re-
spect to the GPS service is equal to Lyqz. In terms of normalized
service, it implies
L Z‘”‘ Vi, Vt (8)

2

|1Si(t) = V(#)| <

known as the Globally Bounded Timestamp (GBT) property [19].
Hence, considering also the second one of Eq. (3), the maximum
difference between system virtual time and flows virtual start/finish
times is 2 - ﬁ, while the maximum difference between system

virtual time and flows virtual unbacking times is (m + 1) - ﬁ,
where m is the maximum number of packets per flow queue, and
Pmin is the minimum weight in the system.

Therefore, if WF2Q is implemented using the classical algorithm
for GPS simulation, that deals only with virtual start and finish
times, the virtual time can be represented on a number of bits n'
such that 2 1 > 2. Lmaz Opthe contrary, since the Ugyee cOn-
tains virtual unbacking times, the virtual time must be represented
using n = n’ + [log, F1] bits in case of L-GPS.

Once n has been properly dimensioned, timestamps wraparound
causes no problem in search trees based on comparisons between

Pref [101-—-
Umax 10110
_ AD —4
Pref |1010-
Xn&;x 10101 AW | 3
,2 =
Pref |-—-0-
AW 1 Upaxg |===01
AD -2
(T [-——-0) (U [--—-1) AW 1
(A -1) AP -1
(0]====0) (U_]=—==-1)
el -1Jae] -1

Figure 8: Modified DTrees.

keys (as Red-black Trees). In contrast, the node hierarchy in a
DTree depends on the binary representation of timestamps. Con-
sider the first virtual unbacking time U — from system startup at
time 0 — whose absolute value exceeds the maximum value allowed
(2™ — 1). Since U representation wraps, the DTree insertion algo-
rithm would put U in the place appropriate to its binary represen-
tation, as if U was smaller than all the other values stored in the
DTree.

The problem can be easily overcome in the following manner.
Since the difference between all the values stored in the Uypee is
always smaller than 2", then, when U representation wraps, all
such values are in the interval [2"7', 2™ — 1] (i.e. the most sig-
nificant bit in their binary representation is set to 1). Then, the
wrapping of U representation can be easily discovered by checking
if the value of U is smaller than 2"~ (i.e. most significant bit set
to 0).

If true, we subtract 2”1 to the current value of the system vir-
tual time and to every virtual unbacking time stored in the Ut,ee,
which can be accomplished by zeroing the most significant bit of
their binary representation. As a consequence, the new value of the
system virtual time and of all the virtual unbacking times stored
in the Upyee will be in the interval [0, 271 — 1]. At this point,
the right ordering between all the values can be easily preserved by
adding 2" ! to U.

The most significant bit in the binary representation of all the
values stored in the Uree can be easily zeroed in O(1) steps, if,
instead of the full binary representation of the prefix (the value, in
case of a leaf), each node is labelled only with the less significant
digits that must be added to the label of its father node to get such
binary representation. Figures 8.A and 8.B show the modified ver-
sions of the augmented DTrees that implement the Uyyee in Figures
3.B.2 and 3.C.2 (symbol ’-’ means non significant digit). By do-
ing so, only the root node will contain the common prefix of the
binary representation of all the values stored in the Uiree. As a
consequence, the most significant bit in the representations of such
values can be zeroed by simply zeroing the most significant bit in
the label of the root node.

6. L-WF2Q

In this section we describe L-WEF2Q, an implementation of WF2Q
with O(log N) complexity and small constants. The algorithm is
shown in Fig. 9. The code of the functions enqueue and dequeue
can be divided into two parts: the first part (enqueue lines 3-12,
dequeue lines 31-36) is a vanilla implementation of the packet
timestamping and selection policy of WF?Q [3] (Eq. 3 and Def.
1), whereas the second part (enqueue lines 13-26, dequeue lines
37-38) deals with the shape data structure and evidences a further

enqueue (pkt: in)

{

// invoked when a new pkt arrives

V = computeV (curr_Ww) ;

1

2

3

4 f = find_flow(pkt) ; // find the flow owning pkt
5

6

7

8

pkt.S= max(V, £.U) ; // Eq. 3
pkt.F =pkt.S + pkt.L/f.phi; // Eq. 3
tail_insert (£, pkt) ; // ins. pkt into f queue
if (queue_head (f) == pkt) { // flow f was idle

9 // update flow timestamps

10 f.S=pkt.S;

11 f.F=pkt.F;

12 }

13 f.U=pkt.F; // update flow unback. virt. time
14 if (f.U<=f.S + Lmax/f.weight) // f£.U is near

15 // 1if non NULL, f.Uleaf points to the leaf

16 // that contains f.U

17 if (f.Uleaf == NULL) { // flow becomes backlogged
18 f.Uleaf = add_break_point (V, f.S, f.phi) ;

19 f.Uleaf = add_break_point (V, f.U, -f.phi) ;

20 }

21 else { // move f.U to the right place
22 f.Uleaf = rem_break_point (f.Uleaf) ;

23 f.Uleaf = add_break_point (V, f.U, -f.phi) ;

24 }

25 else if (f.Uleaf != NULL) // f.U is no more near,
26 rem_break_point (f.Uleaf) ; // remove from Utree
27 }

28

29 packet dequeue() // invoked when the link is avail.
30 {

31 pkt = schedule_next () ; // Def. 1
32 f= find_flow(pkt) ; // find the flow owning pkt
33 head_remove (f) ; // rem. pkt at the head of f queue
34 if (not is_empty(f)) { // update flow timestamps

35 f.S= head(f).S; // f£.U could become near
36 f.F = head(f).F;

37 if (f.Uleaf == NULLand .U <= f.S + Lmax/f.phi)

38 f.Uleaf = add_break_point (£f.U, —-f.phi) ;

39 }

40 return pkt ;

41 '}

Figure 9: L-WF2Q.

improvement on L-GPS, based on the fact that, according to (8)

Us(t) — Si(t) > L;Zf”” = Ut) > V() vt
1

Hence U;(tnew) can constitute an actual break value at time tnew
only if Us (fnew) — Si(bnew) < Lmaz

We define as near the virtual un?acking times that meet the just
mentioned condition. It is easy to understand that the system vir-
tual time can be computed considering only near virtual unback-
ing times. Therefore, the virtual unbacking times to insert into the
Utree can be properly filtered (enqueue line 14, dequeue line 37),
which reduces the depth of the Ugree.

The effectiveness of such improvement during high congestion
periods is shown through simulations in the next section.

7. SIMULATION RESULTS

As shown in Subsection 5.1, DTrees are very simple to handle,
and they allow an efficient implementation of L-GPS. But, whereas
the expected average depth of a DTree is O(log V), its worst case
depth is O(M), where M is the number of bits in the labels of the
nodes.

To show the actual performance of a DTree in practical cases, we
simulated the operation of L-WF?Q when L-GPS is implemented
with a DTree, and the virtual unbacking times are filtered as shown
in the previous subsection.

1000 m— 1000

backlogged flows
near virt. unbgagck. times —— near vli)r‘?cm%:l;?ci(.jifilr%gg E—
DTree depth -------- DTree depth -

100 H

1 \ L 1
0 5 10 15 20 25 30 35 40 45 50 0 100 200 300 400 500 600
[sec] [sec]

Figure 10: System evolution in case of: A) generic scenario with
offered load greater than the link capacity, B) Scenario 5.

We took some statistics on the depth of the Uyyee, and we com-
pared our results with the ones guaranteed by the use of an ideal
perfectly balanced tree or a Red-black Tree.

We used the ns-2 network simulator [21]. The environment con-
sisted of a node with a 10 Mbps output link. We simulated the
following 5 scenarios for 10 minutes each:

1) 1000 simultaneous FTP transfers.

2) 755 (asynchronous) Constant Bit Rate (CBR) traffic sources
with packet length distribution equal to the one that occurs in an In-
ternet router according to [22]. Sources were divided into five rate—
weight groups, ranging from 10 Kbps—1 to 50 Kbps-5, increasing
in steps of 10 Kbps—1.

3) 820 VoIP traffic sources, using CISCO [23] codec 723 (30
bytes payload, 22 packets per sec, 40 bytes IP/UDP/RTP header).

4) 160 Video sources (MPEG-4 coding), transmitting real video
traffic traces taken from [24].

5) A mix of the previous traffic sources: 20 FTP sources, 400
asynchronous 10Kbps CBR sources with rate 10 Kbps, 350 VoIP
sources, 20 Video sources.

During each simulation we took snapshots of the state of the
system — number of backlogged flows, number of near virtual un-
backing times and depth of the Uyee — at time intervals with length
uniformly distributed between 1 and 2 seconds.

As a general result we found that the number of backlogged
flows and, hence, the frequency of breakpoints is very small if the
offered load is smaller than the link capacity, whereas, if the of-
fered load is larger than the link capacity, the number of backlogged
flows is high, but the number of breakpoints stored in the Uyyee is
limited by the filtering of the near virtual unbacking time. Besides,
the more the backlog increases, the more the filtering becomes ef-
fective: Fig. 10.A shows this phenomenon in case of offered load
20% larger than the link capacity.

As a consequence, for each scenario (except for scenario 1), the
number of sources and the rate of each source had to be fine tuned
to achieve the maximum frequency of breakpoints. Fig. 10.B shows
the evolution of the system in case of Scenario 5 (qualitatively sim-
ilar to the ones of scenarios 2, 3 and 4). Apart from a very short
initial transitory period, the number of near virtual unbacking times
recorded in each snapshot is roughly equal to the total number of
flows.

In order to calculate some statistics, we repeated each simulation
10 times and, for each simulation, we considered only the steady
time interval (e.g. [100, 600] in Fig. 10.B).

Scen. | Flows | Mean | 99% Max | Max| Ratio | Max
DTree | Conf. | DTree | Bal. RB

1000 0 0 0 0 -
755 14.62 | 0.02 17 11 1.55 21
820 14.84 | 0.10 17 11 1.55 22
160 9.61 0.04 13 8 1.62 14
790 16.47 | 0.06 20 11 1.82 22

| B W] —

Table 2: Statistics collected for each scenario

Table 2 summarizes our results: for each scenario, each column
reports, respectively, the number of competing flows, the mean
depth of the Uiree; the semi-width of the 99% confidence inter-
val upon such value; the maximum depth of the Uree (the max-
imum among the depths of the Uy ee recorded in each snapshot),
the depth of a perfectly balanced tree containing Nyq. leaves (1 +
[logy Nmaz|), where Npqq is the maximum among the number
of near virtual unbacking times recorded in each snapshot; the ratio
between the maximum depth of the Uiyee (column 5) and the max-
imum depth of the perfectly balanced tree (previous column); the
worst-case depth of a Red-black Tree with Npqo leaves ([2 - (1+
logy Nimaz)], Subsection 5.2).

Whereas the results for scenario 1 are a consequence of the fil-
tering of virtual unbacking times, in all the other cases the mean
depth and the (sample) maximum depth of the augmented DTree is
within a factor 2 with respect to the maximum depth of a perfectly
balanced tree.

8. CONCLUSIONS

In this paper we showed how a GPS server can be simulated
with sub-linear complexity by maintaining aggregate information
in an ad hoc data structure. In particular, we proposed L-GPS, a
new algorithm for computing the state of the simulated GPS server
in O(log N) steps, and we showed that such algorithm provides a
straightforward O(log N') implementation of WF2Q (L-WF2Q).

To the best of our knowledge, L—WFQQ is the first scheduler of
O(log N) complexity achieving the optimum service (i.e. the mini-
mum deviation with respect to the GPS service). Furthermore, ana-
lytical results and simulations demonstrated that the computational
complexity of L-GPS and L-WF?Q has small constants too.

From a theoretical point of view, we reduced the upper bound
complexity for simulating a GPS server, and the upper bound com-
plexity for providing the optimum service, both from O(N) to
O(log N). Moreover, since the complexity lower bound to guar-
antee the minimum deviation with respect to the GPS service is
Q(log N) [13], L-WF?Q achieves the optimum service with opti-
mum complexity.

From a practical point of view, we reduced the complexity of a
scheduler, WF2Q, that provides a very smooth service, suitable for
real time adaptive applications (such as video streaming), and feed-
back based applications (such as congestion control).

9. ACKNOWLEDGEMENTS

I would like to thank Prof. Luigi Rizzo for his helpful comments
and his suggestions on the presentation of the algorithm. I would
like also to thank Giovanni Stea for continuously encouraging me,
and providing valuable suggestions. Finally, I would like to thank
Paolo Gai, Michele Cirinei, my “shepherd” Ion Stoica, and the
anonymous referees for their useful remarks.

10. REFERENCES

[1] A. Parekh and R. G. Gallager, "A generalized processor
sharing approach to flow control - the single node case", in
Proceedings of INFOCOM 92, 1992.

[2] D. Stiliadis and A.Varma, "Rate-proportional servers: A
general methodology for fair queueing algorithms",
IEEE/ACM Transactions on networking, 1996.

[3] References J. C. R. Bennett e H.Zhang, "WF2Q: Worst-case
fair weighted fair queueing", in Proceedings of IEEE
INFOCOM °96, 1996.

[4] L. Stoica, H. Abdel-Wahab. “Earliest Eligible Virtual
Deadline First: A Flexible and Accurate Mechanism for
Proportional Share Resource Allocation”, in Technical
Report 95-22, Department of Computer Science, Old
Dominion University, November 1995.

[5] J. C. R. Bennett e H.Zhang, "Hierarchical packet fair
queueing algorithms", in Proceedings of ACM SIGMETRICS
"96, 1996.

[6] D. Stiliadis and A. Varma, “Efficient Fair Queueing
Algorithms for Packet Switched Networks," in IEEE/ACM
Transactions on Networking, 1998.

[7] D. Stiliadis and A. Varma, “A general methodology for
designing efficient traffic scheduling and shaping
algorithms", in IEEE INFOCOM’97, 1997.

[8] S. Suri, G. Varghese and G. Chandramenon, "Leap Forward
Virtual Clock: A New Fair Queuing Scheme with
Guaranteed Delays and Throughput Fairness", in
Proceedings of IEEE INFOCOM’97, 1997.

[9] S. Golestani. “A self-clocked fair queueing scheme for
broadband applications”, in Proceedings of IEEE
INFOCOM’94, 1994.

[10] P. Goyal, H.M. Vin, and H. Chen. "Start-time Fair Queueing:
A scheduling algorithm for integrated services." In
Proceedings of the SIGCOMM 96, 1996.

[11] M. Shreedhar and G. Varghese. “Efficient fair queueing using
deficit round robin”, in Proceedings of SIGCOMM’95, 1995.

[12] C. Waldspurger. “Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management”, PhD thesis,
Massachusetts Inst. of Technology, 1995.

[13] J. Xu and R. J. Lipton. "On Fundamental Tradeoffs between
Delay Bounds and Computational Complexity in Packet
Scheduling Algorithms", in Proceedings of ACM SIGCOMM
’02, 2002.

[14] A. G. Greenberg and N. Madras, “How Fair is Fair
Queueing?”, Journal of the Association for Computing
Machinery 39, 1992.

[15] Qi Zhao, Jun Xu, “On the Computational Complexity of
Maintaining GPS Clock in Packet Scheduling”, in
Proceedings of IEEE INFOCOM’04, 2004.

[16] D. E. Knuth. The Art of Computer Programming, Vol. 3:
Sorting and Searching. Addison-Wesley, 1973.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to algorithms. The MIT Press, 1991.

[18] L. Devroye. “A note on the average depth of tries”, in
Computing, 28:367-371, 1982.

[19] D.C. Stephens, J.C. Bennett and H. Zhang, “Implementing
scheduling algorithms in high-speed networks” in /[EEE
JSAC Special Issue on High Performance Switches/Routers,
1999.

[20] V. Firoiu, J. Le Boudec, D. Towsley, Z. Zhang. “Advances in
Internet Quality of Service”, Technical report DSC200149,
EPFL-DI-ICA, October 2001.

[21] <www.isi.edu/nsnam/ns/>.

[22] <advanced.comms.agilent.com/
insight/2001-08/Questions/traffic_gen.htm>.

[23] <www.cisco.com>.

[24] <www-tkn.ee.tu-berlin.de/research/trace/trace.html>.

APPENDIX
Proof of Theorem 1

We will proceed by induction. Consider a node P of the Uiree and
let t% ., and t& be the largest time instants represented, respec-

tively, by the subtree rooted at the left child L, and by the subtree
rooted at the right child R of the node P at time tpeq. Possibly

tR ., or both t& and t2 _ are potential break instants at time
tnew .

Let t; be a time instant such that there is no break instant be-
tween ¢; and the smallest break instant t?. = tL_ represented
by the subtree rooted at P, and consider the total amount of service
W (t1, th) that the system is expected to deliver while the virtual
time grows from V(¢1) to V(¢tF,.) = UF,.. = UE,. if no packet
arrives after time tneq (Fig. 4). We can write:

W(tlﬂ tﬁmm) = W(t1, tfnam) + W(tfnam’ tﬁam) (©)]

For the base case suppose that both nodes L and R are leaves:
according to (2), (9) becomes

W(tla tZam) = @(ti")) (U'rl):zaa: - V(tl)) +¢(t'an2—w)) (U'r};am - U'rl;zam)

Since, according to Def. 2,

Btpas) = Pltma,) + AT = o(tf) + AL (10)
we have
W(tlv tiam) = ¢(t1‘_) . (U'rlrlmm - V(tl)) +

+H@E) + Ae”) - (Ufar — Umao)
= () (Uhae — V(1)) +
+&(tF) - (Unaz = Umaz) +
+A®Y - (Uos — Upas)
= o) (Unae —V(t) +
—[-ael . (UR, —UL

axT mazx)]
For the inductive step, suppose that P is a generic internal node,

and that Eq. (7) holds for both its children.
Since there is no break instant between ¢t& _ and t%

., and con-
sidering (10) e e

W(tlv t#am) = @(t?—) . (U'rlrlmz - V(tl)) - Aawk
W(tfnama tﬁmm) = (¢(t—1i_) + AéL)) (Uﬁam - U'rIrlmm) - AWR

Substituting the above expressions in (9)

W(tla tZaw) = Cb(tf—) ' (UTELaw - V(tl)) —Aawt +
+(Q)(t1}_) + ACI)L) : (Url;faa: - Urlrlza:v) - AWR

= Cb(tf) . (U'rlzam - V(tl)) +
—[AWE + AWR — AL (UR,, - UL,.)]

