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ABSTRACT
The ability to locate network bottlenecks along end-to-endpaths
on the Internet is of great interest to both network operators and
researchers. For example, knowing where bottleneck links are, net-
work operators can apply traffic engineering either at the interdo-
main or intradomain level to improve routing. Existing tools ei-
ther fail to identify thelocationof bottlenecks, or generate a large
amount of probing packets. In addition, they often require access
to both end points. In this paper we presentPathneck, a tool that
allows end users to efficiently and accurately locate the bottleneck
link on an Internet path. Pathneck is based on a novel probingtech-
nique called Recursive Packet Train (RPT) and does not require ac-
cess to the destination. We evaluate Pathneck using wide area Inter-
net experiments and trace-driven emulation. In addition, we present
the results of an extensive study on bottlenecks in the Internet us-
ing carefully selected, geographically diverse probing sources and
destinations. We found that Pathneck can successfully detect bot-
tlenecks for almost 80% of the Internet paths we probed. We also
report our success in using the bottleneck location and bandwidth
bounds provided by Pathneck to infer bottlenecks and to avoid bot-
tlenecks in multihoming and overlay routing.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions — Network Monitoring

General Terms
Algorithms, Measurement, Experimentation

Keywords
Active probing, packet train, bottleneck location, available band-
width

1. INTRODUCTION
The ability to locate network bottlenecks along Internet paths

is very useful for both end users and Internet Service Providers
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(ISPs). End users can use it to estimate the performance of the net-
work path to a given destination, while an ISP can use it to quickly
locate network problems, or to guide traffic engineering either at
the interdomain or intradomain level. Unfortunately, it isvery hard
to identify the location of bottlenecks unless one has access to link
load information forall the relevant links. This is a problem, espe-
cially for regular users, because the design of the Internetdoes not
provide explicit support for end users to gain information about the
network internals. Existing active bandwidth probing tools also fall
short. Typically they focus on end-to-end performance [20,18, 26,
30, 36], while providing nolocationinformation for the bottleneck.
Some tools do measure hop-by-hop performance [19, 10], but their
measurement overhead is often very high.

In this paper, we present an active probing tool –Pathneck–
based on a novel probing technique called Recursive Packet Train
(RPT). It allows end users to efficiently and accurately locate bot-
tleneck links on the Internet.The key idea is to combine measure-
ment packets and load packets in a single probing packet train.
Load packets emulate the behavior of regular data traffic while
measurement packets trigger router responses to obtain themea-
surements. RPT relies on the fact that load packets interleave with
competing traffic on the links along the path, thus changing the
length of the packet train. By measuring the changes using the mea-
surement packets, the position of congested links can be inferred.
Two important properties of RPT are that it has low overhead and
does not require access to the destination.

Equipped with Pathneck, we conducted extensive measurements
on the Internet among carefully selected, geographically diverse
probing sources and destinations to study the diversity andstability
of bottlenecks on the Internet. We found that, contrary to the com-
mon assumption that most bottlenecks are edge or peering links,
for certain probing sources, up to 40% of the bottleneck locations
are within an AS. In terms of stability, we found that inter-AS bot-
tlenecks are more stable than intra-AS bottlenecks, while AS-level
bottlenecks are more stable than router-level bottlenecks. We also
show how we can use bottleneck location information and rough
bounds for the per-link available bandwidth to successfully infer
the bottleneck locations for 54% of the paths for which we have
enough measurement data. Finally, using Pathneck results from a
diverse set of probing sources to randomly selected destinations,
we found that over half of all the overlay routing attempts improve
bottleneck available bandwidth. The utility of multihoming in im-
proving available bandwidth is over 78%.

This paper is organized as follows. We first describe the Path-
neck design in Section 2 and then validate the tool in Section3.



Using Pathneck, we probed a large number of Internet destinations
to obtain several different data sets. We use this data to study the
properties of Internet bottlenecks in Section 4, to infer bottleneck
locations on the Internet in Section 5, and to study the implications
for overlay routing and multihoming in Section 6. We discussre-
lated work in Section 7. In Section 8 we summarize and discuss
future work.

2. DESIGN OF PATHNECK
Our goal is to develop a light-weight, single-end-control bottle-

neck detection tool. In this section, we first provide some back-
ground on measuring available bandwidth and then describe the
concept of Recursive Packet Trains and the algorithms used by
Pathneck.

2.1 Measuring Available Bandwidth
In this paper, we define thebottleneck linkof a network path as

the link with the smallest available bandwidth,i.e., the link that
determines the end-to-end throughput on the path. Theavailable
bandwidthin this paper refers to the residual bandwidth, which is
formally defined in [20, 18]. Informally, we define achoke linkas
any link that has a lower available bandwidth than the partial path
from the source to that link. The upstream router for the choke link
is called thechoke pointor choke router. The formal definition of
choke link and choke point is as follows. Let us assume an end-
to-end path from sourceS = R0 to destinationD = Rn through
routersR1, R2, ..., Rn−1. Link Li = (Ri, Ri+1) has available
bandwidthAi(0 ≤ i < n). Using this notation, we define the set
of choke linksas:

CHOKEL = {Lk|∃j, 0 ≤ j < n, k = argmin0≤i≤jAi}

and the corresponding set ofchoke points(or choke routers) are

CHOKER = {Rk|Lk ∈ CHOKEL, 0 ≤ k < n}

Clearly, choke links will have less available bandwidth as they get
closer to the destination, so the last choke link on the path will
be thebottleneck linkor the primary choke link. We will call the
second to last choke link thesecondary choke link, and the third to
last one thetertiary choke link, etc.

Let us now review some earlier work on available bandwidth
estimation. A number of projects have developed tools that esti-
mate the available bandwidth along a network path [20, 18, 26, 30,
36, 13]. This is typically done by sending a probing packet train
along the path and by measuring how competing traffic along the
path affects the length of the packet train (or the gaps between the
probing packets). Intuitively, when the packet train traverses a link
where the available bandwidth is less than the transmissionrate
of the train, the length of the train,i.e., the time interval between
the head and tail packets in the train, will increase. This increase
can be caused by higher packet transmission times (on low capac-
ity links), or by interleaving with the background traffic (heavily
loaded links). When the packet train traverses a link where the
available bandwidth is higher than the packet train transmission
rate, the train length should stay the same since there should be
little or no queuing at that link. By sending a sequence of trains
with different rates, it is possible to estimate the available band-
width on the bottleneck link; details can be found in [18, 26]. Using
the above definition, the links that increase the length of the packet
train correspond to the choke links since they represent thelinks
with the lowest available bandwidth on the partial path traveled by
the train so far.

Unfortunately, current techniques only estimate end-to-end
available bandwidth since they can only measure the train length
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Figure 1: Recursive Packet Train (RPT).

at the destination. In order to identify the bottleneck location, we
need to measure the train length oneachlink. This information can
be obtained with a novel packet train design, called a Recursive
Packet Train, as we describe next.

2.2 Recursive Packet Train
Figure 1 shows an example of a Recursive Packet Train (RPT);

every box is a UDP packet and the number in the box is its TTL
value. The probing packet train is composed of two types of pack-
ets: measurement packets and load packets.Measurement packets
are standard traceroute packets,i.e., they are 60 byte UDP packets
with properly filled-in payload fields. The figure shows 30 mea-
surement packets at each end of the packet train, which allows
us to measure network paths with up to 30 hops; more measure-
ment packets should be used for longer paths. The TTL values of
the measurement packets change linearly, as shown in the figure.
Load packetsare used to generate a packet train with a measur-
able length. As with the IGI/PTR tool [18], load packets should
be large packets that represent an average traffic load. We use 500
byte packets as suggested in [18]. The number of load packetsin
the packet train determines the amount of background trafficthat
the train can interact with, so it pays off to use a fairly longtrain.
In our experiment, we set it empirically in the range of 30 to 100.
Automatically configuring the number of probing packets is future
work.

The probing source sends the RPT packets in a back-to-back
fashion. When they arrive at the first router, the first and thelast
packets of the train expire, since their TTL values are 1. As aresult,
the packets are dropped and the router sends two ICMP packets
back to the source [7]. The other packets in the train are forwarded
to the next router, after their TTL values are decremented. Due to
the way the TTL values are set in the RPT, the above process is
repeated on each subsequent router. The name “recursive” isused
to highlight the repetitive nature of this process.

At the source, we can usethe time gap between the two ICMP
packets from each routerto estimate the packet train length on the
incoming link of that router. The reason is that the ICMP pack-
ets are generated when the head and tail packets of the train are
dropped. Note that the measurement packets are much smallerthan
the total length of the train, so the change in packet train length due
to the loss of measurement packets can be neglected. For example,
in our default configuration, each measurement packet accounts for
only 0.2% the packet train length. We will call the time difference
between the arrival at the source of the two ICMP packets fromthe
same router thepacket gap.

2.3 Pathneck — The Inference Tool
RPT allows us to estimate the probing packet train length on each

link along a path. We use the gap sequences obtained from a setof
probing packet trains to identify the location of the bottleneck link.
Pathneck detects the bottleneck link in three steps:
Step 1:Labeling of gap sequences. For each probing train, Path-
neck labels the routers where the gap value increases significantly
as candidate choke points.
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Step 2: Averaging across gap sequences. Routers that are fre-
quently labeled as candidate choke points by the probing trains in
the set are identified as actual choke points.
Step 3: Ranking choke points. Pathneck ranks the choke points
with respect to their packet train transmission rate.
In the remainder of this section, we describe in detail the algorithms
used in each of the three steps.

2.3.1 Labeling of Gap Sequences

Under ideal circumstances, gap values only increase (if theavail-
able bandwidth on a link is not sufficient to sustain the rate of the
incoming packet train) or stay the same (if the link has enough
bandwidth for the incoming packet train), but it should never de-
crease. In reality, the burstiness of competing traffic and reverse
path effects add noise to the gap sequence, so we preprocess the
data before identifying candidate choke points. We first remove any
data for routers from which we did not receive both ICMP packets.
If we miss data for over half the routers, we discard the entire se-
quence. We then fix thehill andvalleypoints where the gap value
decreases in the gap sequence (Figure 2). A hill point is defined
asp2 in a three-point group (p1, p2, p3) with gap values satisfying
g1 < g2 > g3. A valley point is defined in a similar way with
g1 > g2 < g3. Since in both cases, the decrease is short-term (one
sample), we assume it is caused by noise and we replaceg2 with
the closest neighboring gap value.

We now describe the core part of the labeling algorithm. The idea
is to match the gap sequence to a step function (Figure 3), where
each step corresponds to a candidate choke point. Given a gapse-
quence withlen gap values, we want to identify the step function
that is the best fit, where “best” is defined as the step function for
which the sum of absolute difference between the gap sequence
and the step function across all the points is minimal. We require
the step function to have clearly defined steps,i.e., all steps must
be larger than a threshold (step) to filter out measurement noise.
We use 100microseconds (µs) as the threshold. This value is
relatively small compared with possible sources of error (to be dis-
cussed in Section 2.4), but we want to be conservative in identifying
candidate choke points.

We use the following dynamic programming algorithm to iden-
tify the step function. Assume we have a gap subsequence be-
tween hopi and hopj: gi, ..., gj (i ≤ j), and let us define
avg[i, j] =

∑j

k=i gk/(j−i+1), and the distance sum of the subse-

quence asdist sum[i, j] =
∑j

k=i
|avg[i, j] − gk|. Let opt[i, j, l]

denote the minimal sum of the distance sums for the segments be-
tween hopsi andj (including hopsi andj), given that there are at
mostl steps. The key observation is that, given the optimal splitting
of a subsequence, the splitting of any shorter internal subsequence
delimited by two existing splitting points must be an optimal split-
ting for this internal subsequence. Therefore,opt[i, j, l] can be re-
cursively defined as the follows:

opt[i, j, l] =

{

dist sum[i, j] l = 0 & i ≤ j,
min{opt[i, j, l − 1], opt2[i, j, l]} l > 0 & i ≤ j.

opt2[i, j, l] = min{opt[i, k, l1] + opt[k + 1, j, l − l1 − 1] :
i ≤ k < j, 0 ≤ l1 < l,
|LS[i, k, l1] − FS[k + 1, j, l − l1 − 1]| > step}

Here LS[i, k, l1] denotes the last step value of the optimal step
function fitting the gap subsequence betweeni andk with at most
l1 steps, andFS[k + 1, j, l − l1 − 1] denotes the first step value of
the optimal step function fitting the gap subsequence between k+1
andj with at mostl − l1 − 1 steps.

The algorithm begins withl = 0 and then iteratively improves
the solution by exploring larger values ofl. Every timeopt2[i, j, l]
is used to assign the value foropt[i, j, l], a new splitting pointk is
created. The splitting point is recorded in a setSP [i, j, l], which
is the set of optimal splitting points for the subsequence between
i and j using at mostl splitting points. The algorithm returns
SP [0, len − 1, len − 1] as the set of optimal splitting points for
the entire gap sequence. The time complexity of this algorithm is
O(len5), which is acceptable considering the small value oflen
on the Internet. Since our goal is to detect the primary chokepoint,
our implementation only returns the top three choke points with the
largest three steps. If the algorithm does not find a valid splitting
point, i.e.,SP [0, len−1, len−1] = ∅, it simply returns the source
as the candidate choke point.

2.3.2 Averaging Across Gap Sequences

To filter out effects caused by bursty traffic on the forward and
reverse paths, Pathneck uses results from multiple probingtrains
(e.g., 6 to 10 probing trains) to computeconfidenceinformation
for each candidate choke point. To avoid confusion, we will use
the termprobing for a single RPT run and the termprobing set
for a group of probings (generally 10 probings). The outcomeof
Pathneck is the summary result for a probing set.

For the optimal splitting of a gap sequence, let the sequenceof
step values besvi(0 ≤ i ≤ M), whereM is the total number of
candidate choke points. The confidence for a candidate chokepoint
i (1 ≤ i ≤ M) is computed as

confi =
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Intuitively, the confidence denotes the percentage of available
bandwidth change implied by the gap value change. For the special
case where the source is returned as the candidate choke point, we
set its confidence value to 1.

Next, for each candidate choke point in the probing set we cal-
culated rate as the frequency with which the candidate choke
point appears in the probing set withconf ≥ 0.1. Finally, we
select those choke points withd rate ≥ 0.5. Therefore,the final
choke points for a path are the candidates that appear with high
confidence in at least half of the probings in the probing set. In
Section 3.4, we quantify the sensitivity of Pathneck to these para-
meters.



2.3.3 Ranking Choke Points

For each path, we rank the choke points based on their average
gap value in the probing set. The packet train transmission rateR
is R = ts/g, wherets is the total size for all the packets in the
train andg is the gap value. That is, the larger the gap value, the
more the packet train was stretched out by the link, suggesting a
lower available bandwidth on the corresponding link. As a result,
we identify the choke point with the largest gap value as the bot-
tleneck of the path. Note that since we cannot control the packet
train structure at each hop, the RPT does notactually measure the
available bandwidth on each link, so in some cases, Pathneckcould
select the wrong choke point as the bottleneck. For example,on a
path where the “true” bottleneck is early in the path, the rate of the
packet train leaving the bottleneck can be higher than the available
bandwidth on the bottleneck link. As a result, a downstream link
with slightly higher available bandwidth could also be identified as
a choke point and our ranking algorithm will mistakenly select it as
the bottleneck.

Note that our method of calculating the packet train transmission
rateR is similar to that used by cprobe [13]. The difference is that
cprobe estimates available bandwidth, while Pathneck estimates the
location of the bottleneck link. Estimating available bandwidth in
fact requires careful control of the inter-packet gap for the train [26,
18] which neither tool provides.

While Pathneck does not measure available bandwidth, we can
use the average per-hop gap values to provide a rough upper or
lower bound for the available bandwidth of each link. We consider
three cases:
Case 1:For a choke link,i.e., its gap increases, we know that the
available bandwidth is less than the packet train rate. Thatis, the
rateR computed above is an upper bound for the available band-
width on the link.
Case 2: For links that maintain their gap relative to the previous
link, the available bandwidth is higher than the packet train rateR,
and we useR as a lower bound for the link available bandwidth.
Case 3:Some links may see a decrease in gap value. This decrease
is probably due to temporary queuing caused by traffic burstiness,
and according to the packet train model discussed in [18], wecan-
not say anything about the available bandwidth.
Considering that the data is noisy and that link available bandwidth
is a dynamic property, these bounds should be viewed as very rough
estimates. We provide a more detailed analysis for the bandwidth
bounds on the bottleneck link in Section 3.3.

2.4 Pathneck Properties
Pathneck meets the design goals we identified earlier in thissec-

tion. Pathneck does not need cooperation of the destination, so it
can be widely used by regular users. Pathneck also has low over-
head. Each measurement typically uses 6 to 10 probing trainsof
30 to 100 load packets each. This is a very low overhead com-
pared to existing tools such as pathchar [19] and BFind [10].Fi-
nally, Pathneck is fast. For each probing train, it takes about one
roundtrip time to get the result. However, to make sure we re-
ceive all the returned ICMP packets, Pathneck generally waits for
3 seconds — the longest roundtrip time we have observed on the
Internet — after sending out the probing train, and then exits. Even
in this case, a single probing takes less than 5 seconds. In addi-
tion, since each packet train probes all links, we get a consistent set
of measurements. This, for example, allows Pathneck to identify
multiple choke points and rank them. Note however that Pathneck
is biased towards early choke points— once a choke point has in-
creased the length of the packet train, Pathneck may no longer be

able to “see” downstream links with higher or slightly loweravail-
able bandwidth.

A number of factors could influence the accuracy of Pathneck.
First, we have to consider the ICMP packet generation time on
routers. This time is different for different routers and possibly
for different packets on the same router. As a result, the measured
gap value for a router will not exactly match the packet trainlength
at that router. Fortunately, measurements in [16] and [11] show
that the ICMP packet generation time is pretty small; in mostcases
it is between 100µs and 500µs. We will see later that over 95%
of the gap changes of detected choke points in our measurements
are larger than 500µs. Therefore, while large differences in ICMP
generation time can affect individual probings, they are unlikely to
significantly affect Pathneck bottleneck results.

Second, as ICMP packets travel to the source, they may experi-
ence queueing delay caused by reverse path traffic. Since this delay
can be different for different packets, it is a source of measurement
error. We are not aware of any work that has quantified reversepath
effects. In our algorithm, we try to reduce the impact of thisfactor
by filtering out the measurement outliers. Note that if we hadac-
cess to the destination, we might be able to estimate the impact of
reverse path queueing.

Third, packet loss can reduce Pathneck’s effectiveness. Load
packet loss can affect RPT’s ability to interleave with background
traffic thus possibly affecting the correctness of the result. Lost
measurement packets are detected by lost gap measurements.Note
that it is unlikely that Pathneck would lose significant numbers of
load packets without a similar loss of measurement packets.Con-
sidering the low probability of packet loss in general [23],we do
not believe packet loss will affect Pathneck results.

Fourth, multi-path routing, which is sometimes used for load bal-
ancing, could also affect Pathneck. If a router forwards packets
in the packet train to different next-hop routers, the gap measure-
ments will become invalid. Pathneck can usually detect suchcases
by checking the source IP address of the ICMP responses. In our
measurements, we do not use the gap values in such cases.

Pathneck also has some deployment limitations. First, we dis-
covered that network firewalls often only forward 60 byte UDP
packets that strictly conform to the packet payload format used
by standard Unix traceroute implementation, while they drop any
other UDP probing packets, including the load packets in ourRPT.
If the sender is behind such a firewall, Pathneck will not work. Sim-
ilarly, if the destination is behind a firewall, no measurements for
links behind the firewall can be obtained by Pathneck. Second, even
without any firewalls, Pathneck may not be able to measure the
packet train length on the last link, because the ICMP packets sent
by the destination host cannot be used. In theory, the destination
should generate a “destination port unreachable” ICMP message
for each packet in the train. However, due to ICMP rate limiting,
the destination network system will typically only generate ICMP
packets for some of the probing packets, which often does notin-
clude the tail packet. Even if an ICMP packet is generated forboth
the head and tail packets, theaccumulatedICMP generation time
for the whole packet train makes the returned interval worthless.
Of course, if we have the cooperation of the destination, we can
get a valid gap measurement for the last hop by using a valid port
number, thus avoiding the ICMP responses for the load packets.

3. VALIDATION
We use both Internet paths and the Emulab testbed [3] to evalu-

ate Pathneck. Internet experiments are necessary to study Pathneck
with realistic background traffic, while the Emulab testbedprovides
a fully controlled environment that allows us to evaluate Pathneck



Table 1: Bottlenecks detected on Abilene paths.

Probe d rate Bottleneck AS path
destination (Utah/CMU) router IP (AS1-AS2)†

calren2§ 0.71/0.70 137.145.202.126 2150-2150
princeton§ 0.64/0.67 198.32.42.209 10466-10466
sox§ 0.62/0.56 199.77.194.41 10490-10490
ogig§ 0.71/0.72 205.124.237.10 210-4600 (Utah)

198.32.8.13 11537-4600 (CMU)
† AS1 is bottleneck router’s AS#,AS2 is its post-hop router’s AS#.
§ calren =www.calren2.net, princeton =www.princeton.edu,
§ sox =www.sox.net, ogig =www.ogig.net.

with known traffic loads. Besides the detection accuracy, wealso
examine the accuracy of the Pathneck bandwidth bounds and the
sensitivity of Pathneck to its configuration parameters. Our valida-
tion does not study the impact of the ICMP generation time1.

3.1 Internet Validation
For a thorough evaluation of Pathneck on Internet paths, we

would need to know the actual available bandwidth on all the links
of a network path. This information is impossible to obtain for most
operational networks. The Abilene backbone, however, publishes
its backbone topology and traffic load (5-minute SNMP statistics)
[1], so we decided to probe Abilene paths.

The experiment is carried out as follows. We used two sources: a
host at the University of Utah and a host at Carnegie Mellon Univer-
sity. Based on Abilene’s backbone topology, we chose 22 probing
destinations for each probing source. We make sure that eachof the
11 major routers on the Abilene backbone is included in at least one
probing path. From each probing source, we probed every destina-
tion 100 times, with a 2-second interval between two consecutive
probings. To avoid interference, the experiments conducted at Utah
and at CMU were run at different times.

Usingconf ≥ 0.1 andd rate ≥ 0.5, we only detected 5 non-
first-hop bottleneck links on the Abilene paths (Table 1). This is not
surprising since Abilene paths are known to be over-provisioned,
and we selected paths with many hops inside the Abilene core.The
d rate values for the 100 probes originating from Utah and CMU
are very similar, possibly because they observed similar congestion
conditions. By examining the IP addresses, we found that in 3of
the 4 cases (www.ogig.net is the exception), both the Utah and
CMU based probings are passing through the same bottleneck link
close to the destination; an explanation is that these bottlenecks are
very stable, possibly because they are constrained by link capacity.
Unfortunately, all three bottlenecks are outside Abilene,so we do
not have the load data.

For the path towww.ogig.net, the bottleneck links appear
to be two different peering links going to AS4600. For the path
from CMU to www.ogig.net, the outgoing link of the bottle-
neck router 198.32.163.13 is an OC-3 link. Based on the link
capacities and SNMP data, we are sure that the OC-3 link is in-
deed the bottleneck. We do not have the SNMP data for the Utah
links, so we cannot validate the results for the path from Utah to
www.ogig.net.

3.2 Testbed Validation
We use the Emulab testbed to study the detailed properties of

Pathneck. Since Pathneck is a path-oriented measurement tool, we
use a linear topology (Figure 4). Nodes 0 and 9 are the probing

1A meaningful study of the ICMP impact requires access to differ-
ent types of routers with real traffic load, but we do not have access
to such facilities.
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Figure 4: Testbed configuration.

Table 2: The testbed validation experiments

# X Y Trace Comments
1 50 20 light-traceon all Capacity-determined

bottleneck
2 50 50 35Mbpsexponential-loadon

Y , light-traceotherwise
Load-determined bot-
tleneck

3 20 20 heavy-traceonY , light-trace
otherwise

Two-bottleneck case

4 20 20 heavy-traceonX, light-trace
otherwise

Two-bottleneck case

5 50 20 30% exponential-load on
both directions

The impact of reverse
traffic

source and destination, while nodes 1-8 are intermediate routers.
The link delays are roughly set based on a traceroute measurement
from a CMU host towww.yahoo.com. The link capacities are
configured using the Dummynet [2] package. The capacities for
links X andY depend on the scenarios. Note that all the testbed
nodes are PCs, not routers, so their properties such as the ICMP
generation time are different from those of routers. As a result,
the testbed experiments do not consider some of the router related
factors.

The dashed arrows in Figure 4 represent background traffic. The
background traffic is generated based on two real packet traces,
called light-trace and heavy-trace. The light-trace is a sampled
trace (using prefix filters on the source and destination IP ad-
dresses) collected in front of a corporate network. The traffic load
varies from around 500Kbps to 6Mbps, with a median load of
2Mbps. Theheavy-traceis a sampled trace from an outgoing link
of a data center connected to a tier-1 ISP. The traffic load varies
from 4Mbps to 36Mbps, with a median load of 8Mbps. We also
use a simple UDP traffic generator whose instantaneous load fol-
lows an exponential distribution. We will refer to the load from this
generator asexponential-load. By assigning different traces to dif-
ferent links, we can set up different evaluation scenarios.Since all
the background traffic flows used in the testbed evaluation are very
bursty, they result in very challenging scenarios.

Table 2 lists the configurations of five scenarios that allow us
to analyze all the important properties of Pathneck. For each sce-
nario, we use Pathneck to send 100 probing trains. Since these
scenario are used for validation, we only use the results forwhich
we received all ICMP packets, so the percentage of valid probing is
lower than usual. During the probings, we collected detailed load
data on each of the routers allowing us to compare the probingre-
sults with the actual link load. We look at Pathneck performance
for both probing sets (i.e., result for 10 consecutive probings as re-
ported by Pathneck) and individual probings. For probing sets, we
useconf ≥ 0.1 andd rate ≥ 0.5 to identify choke points. The
real background traffic load is computed as the average load for the
interval that includes the 10 probes, which is around 60 seconds.
For individual probings, we only useconf ≥ 0.1 for filtering, and
the load is computed using a 20ms packet trace centered around
the probing packets,i.e.,we use the instantaneous load.
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Figure 5: Comparing the gap sequences for capacity (left) and
load-determined (right) bottlenecks.

3.2.1 Experiment 1 — Capacity-determined Bottleneck

In this experiment, we set the capacities ofX andY to 50Mbps
and 20Mbps, and uselight-traceon all the links; the starting times
within the trace are randomly selected. All 100 probings detect hop
6 (i.e., link Y ) as the bottleneck. All other candidate choke points
are filtered out because of a low confidence value (i.e., conf <
0.1). Obviously, the detection results for the probing sets arealso
100% accurate.

This experiment represents the easiest scenario for Pathneck, i.e.,
the bottleneck is determined by the link capacity, and the back-
ground traffic is not heavy enough to affect the bottleneck loca-
tion. This is however an important scenario on the Internet.A large
fraction of the Internet paths fall into this category because only a
limited number of link capacities are widely used and the capacity
differences tend to be large.

3.2.2 Experiment 2 — Load-determined Bottleneck

Besides capacity, the other factor that affects the bottleneck po-
sition is the link load. In this experiment, we set the capacities of
bothX andY to 50Mbps. We use the 35Mbpsexponential-loadon
Y and thelight-traceon other links, so the difference in traffic load
on X andY determines the bottleneck. Out of 100 probings, 23
had to be discarded due to ICMP packet loss. Using the remaining
77 cases, the probing sets always correctly identifyY as the bottle-
neck link. Of the individual probings, 69 probings correctly detect
Y as the top choke link, 2 probings pick link〈R7, R8〉 (i.e.,the link
afterY ) as the top choke link andY is detected as the secondary
choke link. 6 probings miss the real bottleneck. In summary,the
accuracy for individual probings is 89.6%.

3.2.3 Comparing the Impact of Capacity and Load

To better understand the impact of link capacity and load in de-
termining the bottleneck, we conducted two sets of simplified ex-
periments using configurations similar to those used in experiments
1 and 2. Figure 5 shows the gap measurements as a function of the
hop count (x axis). In the left figure, we fix the capacity ofX to
50Mbps and change the capacity ofY from 21Mbps to 30Mbps
with a step size of 1Mbps; no background traffic is added on any
link. In the right figure, we set the capacities of bothX andY
to 50Mbps. We apply different CBR loads toY (changing from
29Mbps to 20Mbps) while there is no load on the other links. For
each configuration, we executed 10 probings. The two figures plot
the median gap value for each hop; for most points, the 30-70 per-
centile interval is under 200µs.

In both configurations, the bottleneck available bandwidth
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Figure 6: Cumulative distribution of bandwidth difference in
experiment 3.

changes in exactly the same way,i.e., it increases from 21Mbps
to 30Mbps. However, the gap sequences are quite different. The
gap increases in the left figure are regular and match the capacity
changes, since the length of the packet train is strictly setby the
link capacity. In the right figure, the gaps at the destination are
less regular and smaller. Specifically, they do not reflect the avail-
able bandwidth on the link (i.e., the packet train rate exceeds the
available bandwidth). The reason is that the back-to-back prob-
ing packets compete un-fairly with the background traffic and they
can miss some of the background traffic that should be captured.
This observation is consistent with the principle behind TOPP [26]
and IGI/PTR [18], which states that the probing rate should be set
properly to accurately measure the available bandwidth. This ex-
plains why Pathneck’s packet train rate at the destination provides
only an upper bound on the available bandwidth. Figure 5 shows
that the upper bound will be tighter for capacity-determined bottle-
necks than for load-determined bottlenecks. The fact that the gap
changes in the right figure are less regular than that in the left fig-
ure also confirms that capacity-determined bottlenecks areeasier to
detect than load-determined bottlenecks.

3.2.4 Experiments 3 & 4 — Two Bottlenecks

In these two experiments, we set the capacities of bothX andY
to 20Mbps, so we have two low capacity links and the bottleneck
location will be determined by load. In experiment 3, we use the
heavy-tracefor Y and thelight-trace for other links. The probing
set results are always correct,i.e.,Y is detected as the bottleneck.
When we look at the 86 valid individual probings, we find thatX
is the real bottleneck in 7 cases; in each case Pathneck successfully
identifiesX as theonly choke link, and thus the bottleneck. In the
remaining 79 cases,Y is the real bottleneck. Pathneck correctly
identifiesY in 65 probings. In the other 14 probings, Pathneck
identifiesX as the only choke link,i.e., Pathneck missed the real
bottleneck linkY . The raw packet traces show that in these 14
incorrect cases, the bandwidth difference betweenX andY is very
small. This is confirmed by Figure 6, which shows the cumulative
distribution of the available bandwidth difference between X and
Y for the 14 wrong cases (the dashed curve), and for all 86 cases
(the solid curve). The result shows that if two links have similar
available bandwidth, Pathneck has a bias towards the first link. This
is because the probing packet train has already been stretched by
the first choke linkX, so the second choke linkY can be hidden.

As a comparison, we apply theheavy-traceto bothX andY in
experiment 4. 67 out of the 77 valid probings correctly identify X
as the bottleneck; 2 probings correctly identifyY as the bottleneck;
and 8 probings miss the real bottleneck linkY and identifyX as
the only bottleneck. Again, if multiple links have similar available
bandwidth, we observe the same bias towards the early link.



Table 3: The number of times of each hop being a candidate
choke point.

Router 1 2 3 4 5 6 7
conf ≥ 0.1 24 18 5 21 20 75 34
d rate ≥ 0.5 6 0 0 2 0 85 36

3.2.5 Experiment 5 — Reverse Path Queuing

To study the effect of reverse path queuing, we set the capacities
of X andY to 50Mbps and 20Mbps, and applyexponential-load
in both directions on all links (except the two edge links). The
average load on each link is set to 30% of the link capacity. We
had 98 valid probings. The second row in Table 3 lists the number
of times that each hop is detected as a candidate choke point (i.e.,
with conf ≥ 0.1). We observe that each hop becomes a candidate
choke point in some probings, so reverse path traffic does affect the
detection accuracy of RPTs.

However, the use of probing sets reduces the impact of reverse
path traffic. We analyzed the 98 valid probings as 89 sets of 10con-
secutive probings each. The last row of Table 3 shows how often
links are identified as choke points (d rate ≥ 0.5) by a probing
set. The real bottleneck, hop 6, is most frequently identified as the
actual bottleneck (last choke point), although in some cases, the
next hop (i.e., hop 7) is also a choke point and is thus selected as
the bottleneck. This is a result of reverse path traffic. Normally, the
train length on hop 7 should be the same as on hop 6. However, if
reverse path traffic reduces the gap between the hop 6 ICMP pack-
ets, or increases the gap between the hop 7 ICMP packets, it will
appear as if the train length has increased and hop 7 will be labeled
as a choke point. We hope to tune the detection algorithm to reduce
the impact of this factor as part of future work.

3.3 Validation of Bandwidth Bounds
A number of groups have shown that packet trains can be used

to estimate the available bandwidth of a network path [26, 18, 21].
However, the source has to carefully control the inter-packet gap,
and since Pathneck sends the probing packets back-to-back,it can-
not, in general, measure the available bandwidth of a path. Instead,
as described in Section 2.3, the packet train rate at the bottleneck
link can provide a rough upper bound for the available bandwidth.
In this section, we compare the upper bound on available band-
width on the bottleneck link reported by Pathneck with end-to-end
available bandwidth measurements obtained using IGI/PTR [18]
and Pathload [21].

Since both IGI/PTR and Pathload need two-end control, we used
10 RON nodes for our experiments, as listed in the “BW” column
in Table 4; this results in 90 network paths for our experiment.
On each RON path, we obtain 10 Pathneck probings, 5 IGI/PTR
measurements, and 1 Pathload measurement2. The estimation for
the upper bound in Pathneck was done as follows. If a bottleneck
can be detected from the 10 probings, we use the median packet
train transmission rate on that bottleneck. Otherwise, we use the
largest gap value in each probing to calculate the packet train rate
and use the median train rate of the 10 probings as the upper bound.

Figure 7 compares the average of the available bandwidth esti-
mates provided by IGI, PTR, and Pathload (x axis) with the up-
per bound for the available bandwidth provided by Pathneck (y
axis). The measurements are roughly clustered in three areas.
For low bandwidth paths (bottom left corner), Pathneck provides

2We force Pathload to stop after 10 fleets of probing. If Pathload
has not converged, we use the average of the last 3 probings asthe
available bandwidth estimate.

Table 4: Probing sources from PlanetLab (PL) and RON.
ID Probing AS Location Upstream Test- B G S O M

Source Number Provider(s) bed W E T V H
1 aros 6521 UT 701 RON

√ √ √

2 ashburn 7911 DC 2914 PL
√ √

3 bkly-cs 25 CA 2150, 3356, PL
√ √ √

11423, 16631
4 columbia 14 NY 6395 PL

√ √

5 diku 1835 Denmark 2603 PL
√ √

6 emulab 17055 UT 210 –
√ √

7 frankfurt 3356 Germany 1239, 7018 PL
√ √

8 grouse 71 GA 1239, 7018 PL
√ √

9 gs274 9 PA 5050 –
√ √

10 bkly-intel 7018 CA 1239 PL
√ √

11 intel 7018 CA 1239 RON
√ √

12 jfk1 3549 NY 1239, 7018 RON
√ √ √

13 jhu 5723 MD 7018 PL
√ √ √

14 nbgisp 18473 OR 3356 PL
√ √

15 nortel 11085 Canada 14177 RON
√ √ √

16 nyu 12 NY 6517, 7018 RON
√ √ √

17 princeton 88 NJ 7018 PL
√ √ √

18 purdue 17 IN 19782 PL
√ √

29 rpi 91 NY 6395 PL
√ √ √

20 uga 3479 GA 16631 PL
√ √

21 umass 1249 MA 2914 PL
√ √

22 unm 3388 NM 1239 PL
√ √

23 utah 17055 UT 210 PL
√ √

24 uw-cs 73 WA 101 PL
√ √

25 vineyard 10781 MA 209, 6347 RON
√ √

26 rutgers 46 NJ 7018 PL
√

27 harvard 11 MA 16631 PL
√

28 depaul 20130 CH 6325, 16631 PL
√ √

29 toronto 239 Canada 16631 PL
√

30 halifax 6509 Canada 11537 PL
√

31 unb 611 Canada 855 PL
√

32 umd 27 MD 10086 PL
√ √

33 dartmouth 10755 NH 13674 PL
√ √

34 virginia 225 VA 1239 PL
√

35 upenn 55 PA 16631 PL
√

36 cornell 26 NY 6395 PL
√

37 mazu1 3356 MA 7018 RON
√

38 kaist 1781 Korea 9318 PL
√

39 cam-uk 786 UK 8918 PL
√

40 ucsc 5739 CA 2152 PL
√

41 ku 2496 KS 11317 PL
√

42 snu-kr 9488 Korea 4766 PL
√

43 bu 111 MA 209 PL
√

44 northwestern 103 CH 6325 PL
√

45 cmu 9 PA 5050 PL
√

46 mit-pl 3 MA 1 PL
√

47 stanford 32 CA 16631 PL
√

48 wustl 2552 MO 2914 PL
√

49 msu 237 MI 3561 PL
√

50 uky 10437 KY 209 PL
√

51 ac-uk 786 UK 3356 PL
√

52 umich 237 MI 3561 PL
√

53 cornell 26 NY 6395 RON
√

54 lulea 2831 Sweden 1653 RON
√

55 ana1 3549 CA 1239, 7018 RON
√

56 ccicom 13649 UT 3356, 19092 RON
√

57 ucsd 7377 CA 2152 RON
√

58 utah 17055 UT 210 RON
√

BW: measurements for bandwidth estimation; GE: measurements for general properties;
ST: measurements for stability analysis; OV: measurementsfor overlay analysis;
MH: measurements for multihoming analysis. “–” denotes thetwo probing hosts obtained privately.
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Figure 7: Comparison between the bandwidth from Pathneck
with the available bandwidth measurement from IGI/PTR and
Pathload.

a fairly tight upper bound for the available bandwidth on thebot-
tleneck link, as measured by IGI, PTR, and Pathload. In the upper
left region, there are 9 low bandwidth paths for which the upper
bound provided by Pathneck is significantly higher than the avail-
able bandwidth measured by IGI, PTR, and Pathload. Analysis
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Figure 9: Sensitivity of Pathneck to the values ofconf and
d rate.

shows that the bottleneck link is the last link, which is not visible
to Pathneck. Instead, Pathneck identifies an earlier link, which has
a higher bandwidth, as the bottleneck.

The third cluster corresponds to high bandwidth paths (upper
right corner). Since the current available bandwidth toolshave a
relative measurement error around 30% [18], we show the two 30%
error margins as dotted lines in Figure 7. We consider the upper
bound for the available bandwidth provided by Pathneck to bevalid
if it falls within these error bounds. We find that most upper bounds
are valid. Only 5 data points fall outside of the region defined by
the two 30% lines. Further analysis shows that the data pointabove
the region corresponds to a path with a bottleneck on the lastlink,
similar to the cases mentioned above. The four data points below
the region belong to paths with the same source node (lulea).We
have not been able to determine why the Pathneck bound is too low.

3.4 Impact of Configuration Parameters
The Pathneck algorithms described in Section 2.3 use three con-

figuration parameters: the threshold used to pick candidatechoke
points (step = 100µs), the confidence value (conf = 0.1), and the
detection rate (d rate = 0.5). We now investigate the sensitivity of
Pathneck to the value of these parameters.

To show how the 100µs threshold for the step size affects the al-
gorithm, we calculated the cumulative distribution function for the
step sizes for the choke points detected in the “GE” set of Internet
measurements (Table 4, to be described in Section 4.1). Figure 8
shows that over 90% of the choke points have gap increases larger
than 1000µs, while fewer than 1% of the choke points have gap
increases around 100µs. Clearly, changing the step threshold to a
larger value (e.g.,500µs) will not change our results significantly.

To understand the impact ofconf andd rate, we reran the Path-
neck detection algorithm by varyingconf from 0.05 to 0.3 and
d rate from 0.5 to 1. Figure 9 plots the percentage of paths with

at least one choke point that satisfies both theconf and d rate
thresholds. The result shows that, as we increaseconf andd rate,
fewer paths have identifiable choke points. This is exactly what we
would expect. With higher values forconf andd rate, it becomes
more difficult for a link to be consistently identified as a choke link.
The fact that the results are much less sensitive tod rate thanconf
shows that most of the choke point locations are fairly stable within
a probing set (short time duration).

The available bandwidth of the links on a path and the location
of both choke points and the bottleneck are dynamic properties.
The Pathneck probing trains effectively sample these properties,
but the results are subject to noise. Figure 9 shows the tradeoffs
involved in using these samples to estimate the choke point loca-
tions. Using high values forconf andd rate will result in a small
number of stable choke points, while using lower values willalso
identify more transient choke points. Clearly the right choice will
depend on how the data is used. We see that for our choice of
conf andd rate values, 0.1 and 0.5, Pathneck can clearly identify
one or more choke points on almost 80% of the paths we probed.
The graph suggests that our selection of thresholds corresponds to
a fairly liberal notion of choke point.

4. INTERNET BOTTLENECK
MEASUREMENT

It has been a common assumption in many studies that bottle-
necks often occur at edge links and peering links. In this section, we
test this popular assumption using Pathneck, which is sufficiently
light-weight to conduct large scale measurements on the Internet.
Using the same set of data, we also look at the stability of Internet
bottlenecks.

4.1 Data Collection
We chose a set of geographically diverse nodes from Planet-

lab [4] and RON [31] as probing sources. Table 4 lists all the nodes
that we used for collecting measurement data for the analysis in
this paper. Among them, “GE” is used in Sections 4.2, 4.3, and5,
“ST” is used in Section 4.4, “OV” is used in Section 6.1, and “MH”
is used in Section 6.2. These nodes reside in 46 distinct ASesand
are connected to 30 distinct upstream providers, providinggood
coverage for north America and parts of Europe.

We carefully chose a large set of destinations to cover as many
distinct inter-AS links as possible. Our algorithm selectsdestina-
tion IP addresses using the local BGP routing table information of
the probe source, using a similar method as described in [24]. In
most cases, we do not have access to the local BGP table for the
sources, but we almost always can obtain the BGP table for their
upstream provider, for example from public BGP data sourcessuch
as RouteViews [6]. The upstream provider information can beiden-
tified by performing traceroute to a few randomly chosen locations
such aswww.google.com andwww.cnn.com from the probe
sources. In the case of multihomed source networks, we may not
be able to obtain the complete set of upstream providers.

Given a routing table, we first pick a “.1” or “.129” IP address
for each prefix possible. The prefixes that are completely covered
by their subnets are not selected. We then reduce the set of IPad-
dresses by eliminating the ones whose AS path starting from the
probe source are part of other AS paths. Here we make the sim-
plification that there is only a single inter-AS link betweeneach
pair of adjacent ASes. As the core of the Internet is repeatedly tra-
versed for the over 3,000 destinations we selected for each source,
we would expect that each of these inter-AS links is traversed many
times by our probing packets. Note that the destination IP addresses



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path source ID

F
ra

ct
io

n 
of

 p
at

hs

0
1
2
3
4
5

(a) Distribution of number of choke links per source.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

popularity

C
D

F

bottleneck link
choke link

(b) Popularity of choke links and bottleneck links.

Figure 10: Distribution and popularity of choke links.

obtained from this procedure donot necessarily correspond to real
end hosts.

In our experiments, each source node probes each destination
once using Pathneck. Pathneck is configured to use a probing set
of 10 probing trains and it then uses the results of the probing set to
calculate the location of the choke points as well as a rough estimate
for the available bandwidth for the corresponding choke links. We
again use theconf ≥ 0.1 andd rate ≥ 0.5 thresholds to select
choke points. Due to the small measurement time, we were ableto
finish probing to around 3,500 destinations within 2 days.

4.2 Popularity
As described in previous sections, Pathneck is able to detect mul-

tiple choke links on a network path. In our measurements, Pathneck
detected up to 5 choke links per path. Figure 10(a) shows the num-
ber of paths that have 0 to 5 choke links. We found that, for all
probing sources, fewer than 2% of the paths report more than 3
choke links. We also noticed that a good portion of the paths have
no choke link. This number varies from 3% to 60% across different
probing sources. The reason why Pathneck cannot detect a choke
link is generally that the traffic on those paths is too burstyso no
link meets theconf ≥ 0.1 andd rate ≥ 0.5 criteria.

In our measurements, we observe that some links are detected
as choke links in a large number of paths. For a linkb that
is identified as a choke link by at least one Pathneck probe, let
NumProbe(b) denote the total number of probes that traverseb
and letNumPositiveProbe(b) denote the total number of probes
that detectb as a choke link. We compute thePopularity(b) of
link b as follows:

Popularity(b) =
NumPositiveProbe(b)

NumProbe(b)

The popularity of a bottleneck link is defined similarly. Fig-
ure 10(b) shows the cumulative distribution of the popularity of
choke links (dashed curve) and bottleneck links (solid curve) in our
measurements. We observe that half of the choke links are detected

in 20% or less of the Pathneck probings that traverse them. About
5% of the choke links are detected by all the probes. The same
observations hold for the popularity of bottleneck links.

4.3 Location
In general, a linkb is considered to be anintra-AS link if both

ends ofb belong to the same AS; otherwise,b is aninter-AS link. In
practice, it is surprisingly difficult to identify a link at the bound-
ary between two ASes due to the naming convention [24] that is
currently used by some service providers. In our experiments, we
first use the method described in [24] to map an IP address to its
AS. We then classify a linkb into one of the following three cat-
egories: (i)Intra-AS link. A link b is intra-AS if both ends ofb
and its adjacent links belong to the same AS. Note that we are very
conservative in requiring that intra-AS links fully resideinside a
network. (ii) Inter0-AS link.A link b is inter0-AS if the ends ofb
do not belong to the same AS. The linkb is likely to be an inter-AS
link, but it is also possible thatb is one hop away from the actual
inter-AS link. (iii) Inter1-AS link. A link b is inter1-AS if both
ends ofb belong to the same AS and it is adjacent to an inter0-AS
link. In this case,b appears to be one hop away from the link where
AS numbers change, but it might be the actual inter-AS link. Note
that, using our definitions, the inter0-AS links and inter1-AS links
should contain all the inter-AS links and some intra-AS links that
are one hop away from the inter-AS links.

Figure 11(a) shows the distribution of choke links and bottle-
neck links across these three categories. We observe that for some
probing sources up to 40% of both the bottleneck links and choke
links occur at intra-AS links. Considering our very conservative
definition of intra-AS link, this is surprising, given the widely used
assumption that bottlenecks often occur at the boundary links be-
tween networks.

For a choke linkb in a probing setP , we compute itsnormal-
ized location(denoted byNL(b, P )) on the corresponding net-
work path as follows. LetA1, A2, ..., Ak denote the AS-level path,
wherek is the length of the AS path. (i) Ifb is in thei-th AS along
the path, thenNL(b, P ) = i/k. (ii) If b is the link between thei-th
and (i + 1)-th ASes, thenNL(b, P ) = (i + 0.5)/k. Note that the
value ofNL(b, P ) is in the range of [0, 1]. The smaller the value
of NL(b, P ), the closer the choke linkb is to the probing source.
Given a set of probing setsP1, P2, ..., Pm (m > 0) that detectb as
a choke link, the normalized location of linkb is computed as

NL(b) =

∑m

j=1
NL(b, Pj)

m
Since the bottleneck link is the primary choke link, the definition
of normalized locationalso applies to the bottleneck link.

Figure 11(b) shows the cumulative distribution of the normalized
locations of both bottleneck and choke links. The curves labeled
“(unweighted)” show the distribution when all links have anequal
weight, while for the curves labeled “(weighted)” we gave each link
a weight equal to the number of probing sets in which the link is
detected as a bottleneck or choke link. This is interesting because
we observed in Figure 10(b) that some links are much more likely
to be a bottleneck or a choke link than others. The results show
that about 65% of the choke links appear in the first half of an
end-to-end path (i.e., NL(b, P ) ≤ 0.5). By comparing weighted
with unweighted curves, we also observe that high-frequency choke
links tend to be located closer to the source. Finally, by comparing
the curves for choke links and bottleneck links, we observe that
bottleneck locations are more evenly distributed along theend-to-
end path. These observations are in part influenced by the definition
of choke link and bottleneck, and by Pathneck’s bias towardsearlier
choke links.
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Figure 11: Location of bottleneck and choke links.

Figure 11(c) shows the cumulative distribution for the normal-
ized location for choke links and bottleneck links separately for the
different classes of links; the results have been weighted by the
number of probing sets in which a link is detected as a choke link
or bottleneck link. We observe that intra-AS choke links andbot-
tleneck links typically appear earlier in the path than inter0-AS and
inter1-AS choke links and bottlenecks. The reason could be that
some sources encounter choke links and bottlenecks in theirhome
network.

4.4 Stability
Due to the burstiness of Internet traffic and occasional routing

changes, the bottleneck on an end-to-end path may change over
time. In this section, we study the stability of the bottlenecks.
For our measurements, we randomly selected 10 probing sources
from PlanetLab (“ST” data set in Table 4). We sampled 30 desti-
nations randomly chosen from the set of destinations obtained in
Section 4.1. We took measurements for a three hour period and
we divided this period into 9 epochs of 20 minutes each. In each
epoch, we ran Pathneck once for each source-destination pair. Path-
neck used probing sets consisting of 5 probing trains and reported
choke links for each 5-train probing set.

Suppose link b is a choke link in probing seti. Let
DetectionRatei(b) denote the frequency with whichb is a can-
didate choke link in probing seti. For each path, we define the
stability of choke linkb over a period ofn epochs as

Stability(b) =
n

∑

i=1

DetectionRatei(b)

The same definition applies to bottleneck links. Note that the range
of Stability(b) is [0.5,n] becaused rate ≥ 0.5.

Figure 12(a) shows the cumulative distribution for stability over
all measurements. We can see that bottlenecks and choke links have
very similar stability, but this stability is however not very high. We
speculate that the reason is that many bottlenecks are determined by
the traffic load, not link capacity. Figure 12(b) shows the stability
(at the router level) for intra-AS, inter0-AS and inter1-ASchoke
links. We see that intra-AS choke links are significantly less stable
than inter-AS choke links. Comparing the two types of inter-AS
choke links, inter0-AS choke links are more stable than inter1-AS
choke links. We observe similar results at the AS level as shown
by the curves labeled “intra-AS-level” and “inter1-AS-level”: the
intra-AS choke links are again less stable than the inter1-AS choke
links. Moreover, we see, not surprisingly, that AS-level choke links
are more stable than router-level choke links. Similar observations
apply to bottlenecks (not shown in Figure 12(b)). Given the small
number of destinations (i.e., 30) and short duration of the exper-
iment (i.e., 3 hours), we cannot claim that these stability results
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Figure 12: The stability of choke links.

are representative for the Internet. We plan to do more extensive
experiments in the future.

5. INFERRING BOTTLENECKS
In this section, we look at the problem of inferring the bottleneck

location for a path that was not directly probed by Pathneck.The
observation is that, if all or most of the links on a path are also part
of paths that have already been probed, we may be able to derive the
bottleneck location without actually probing the path. This could
significantly reduce the amount of probing that must be done when
studying bottleneck locations.
Methodology: We divide the “GE” data set we gathered in Sec-
tion 4 into two parts — a training set and a testing set. Thetraining
setis used to label each linkL with an upper boundBu(L) and/or
a lower boundBl(L) for the available bandwidth; these bounds
are calculated using the algorithm presented in Section2.3.3. If
there are multiple bounds on the available bandwidth of a link from
multiple probing sets, we take the lowest upper bound as the up-
per bound of the link’s available bandwidth and the highest lower
bound as the lower bound of the link’s available bandwidth. Since



Table 5: Inference results

Class Links Correct Incorrect No upper Not Total
covered bound covered

0 100% 10.2% 8.5% 9.9% 0% 28.6%
1 [80%, 100%) 11.4% 9.3% 9.8% 7.2% 37.7%
2 [70%, 80%) 2.7% 2.5% 2.4% 3.6% 11.2%
3 [60%, 70%) 1.4% 1.3% 1.3% 2.6% 6.6%
4 [0%, 60%) 0.9% 0.8% 0.6% 2.2% 4.5%
– – – – – – 11.4%

Total – 26.6% 22.4% 24% 15.6% 100%

this type of calculation on bounds is very sensitive to measurement
noise, we first preprocess the data: we include upper bounds only
if the standard deviation across the probing set is less than20% of
the average upper bound.

The testing setis used for inference validation as follows. For
each pathP in the testing set, we try to annotate each linkLi ∈ P .
If the link is covered in the training set, we associate the upper
boundBu(Li) and/or lower boundBl(Li) derived from the train-
ing set with it. We identify the linkLi with the lowest upper bound
Bu(Li) as the inferred bottleneck link̂Li; we ignore links that
have no bounds or only lower bounds. We then compareL̂i with
the “true” bottleneck location, as identified by the Pathneck result
in the testing set. If the location matches, we claim that thebot-
tleneck location inference for the pathP is successful. Paths in
the testing set for which Pathneck cannot identify any chokelink
with high enoughd rate andconf are excluded from the analy-
sis. Note that routers may have multiple interfaces with different
IP addresses, we use the toolAlly [35] to resolve router aliases.

When evaluating how successful we are in inferring bottleneck
location, we need to account for the fact that for most paths,we
miss information for at least some of the links. Obviously wewould
expect to have a lower success rate for such paths. For this reason,
we classify the paths in the testing set into 5 classes based on the
percentage of links that are covered by the training set.Class 0
includes paths in the testing set for which we have some informa-
tion (either upper bound, lower bound, or both) for every link in
the path.Class 1includes paths for which we have information for
over 80% of the links, but not for every link. Similarly,Classes2,
3, and 4 include paths for which the percentage of covered links is
[70%, 80%), [60%, 70%), and [0%, 60%), respectively.
Results: The probing data that we used in this section includes the
results for 51,193 paths. We randomly select 60% of the probing
sets as the training data, while the remaining 40% are used astest-
ing data for inference evaluation. That gives us 20,699 paths in the
testing set. Column “Total” in Table 5 lists the percentage of paths
in each class; the “11.4%” entry corresponds to paths in the testing
set on which we cannot identify a bottleneck.

Column “Correct” corresponds to the cases where inference
was successful, while column “Incorrect” corresponds to the cases
where we picked the wrong link as the bottleneck, even though
the training set provided sufficient information about the real bot-
tleneck link. Column “No upper bound” corresponds to the paths
where we picked the wrong bottleneck link, but the training set
only has lower bounds for the true bottleneck link; this is typically
because the link was covered by very few probings in the training
set. The column “Not covered” corresponds to paths for whichthe
bottleneck link is not covered in the training set, so we can obvi-
ously not identify the link as the bottleneck link. For both the “No
upper bound” and “Not covered” cases, inference fails because the
training set does not offer sufficient information. A more carefully
designed training set should reduce the percentage of pathsin these
categories.

Overall, inference is successful for 30% of the paths which we

can identify bottleneck in the testing set, while the success rate
increases to 54% when we have sufficient data in the training set.
Note the diminishing trend in the inference success rate as we have
information for fewer links in the path: the “Correct” casesaccount
for 36%, 30%, 24%, 21% and 20% of the paths inClasses0 through
4, respectively. This drop is expected since the less information we
have on a path, the less likely it is that we can infer the bottleneck
location correctly.
Discussion: The inference capability presented in this section
shows that it is possible to infer the network bottleneck location
without probing the path with some level of accuracy. However,
we need sufficient information on the links in the path so it isim-
portant to properly design the training set to reduce the number of
links for which we have little or no data. Ideally, we would beable
to systematically probe a specific region of the Internet andput the
results in a database. This information could then be used byap-
plications to infer the bottlenecks for any path in that region of the
network.

6. AVOIDING BOTTLENECKS
In this section we study how bottleneck information obtained by

Pathneck can be used to improve overlay routing and multihoming.

6.1 Overlay Routing
Overlay routing, or application layer routing, refers to the idea of

going through one or more intermediate nodes before reaching the
destination. The intermediate nodes act as application layer routers
or overlay nodes by forwarding traffic typically without anyad-
ditional processing. Previous studies [33, 31] have shown that by
going through an intermediate node, the round trip delay canbe sig-
nificantly improved and routing failures can be bypassed. Insuch
cases, the part of the network experiencing congestion or routing
problems is avoided. Note that between any two overlay nodesor
between an overlay node and either the source or destination, regu-
lar IP routing is used to route traffic. One of the reasons why such
“triangular” routing works is that BGP — the Inter-domain Rout-
ing Protocol, does not optimize for network performance in terms
of delay, loss rate, or bandwidth. Shortest AS-path-based routing
does not always yield the best performing paths because routing
policies can cause path inflation [37, 34].

Overlay routing can thus be used to avoid bottleneck links in
the underlying IP path, thereby improving application level per-
formance in terms of throughput. So far, no studies have quan-
tified the benefit overlay routing provides in avoiding bottleneck
links. To the best of our knowledge, this study presents the very
first large scale analysis of how overlay routing can improvethe
available bandwidth of a path. Other metrics such as delay, loss
rate, and cost [15] are also important, and we plan to study the
correlation between these metrics and the available bandwidth we
consider here in a future study. Most of the nodes from which we
performed probing are well connected,i.e., they receive upstream
Internet service from a tier-1 ISP. We would like to understand the
utility of overlay routing when the probe nodes serve as overlay
routers for paths destined to arbitrary locations in the Internet. We
used the following probing methodology to gather the data for this
study.
Methodology: We selected 27 RON and Planetlab nodes as both
the source nodes and overlay nodes, as listed in the “OV” column in
Table 4. Using a BGP table from a large tier-1 ISP, we sampled200
random IP addresses from a diverse set of prefixes; each IP address
originates from a different AS and ends with “.1” to minimizethe
chance of triggering alarms at firewalls. From each probing source
we performed the probing process described below during thesame
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time period to minimize the effect of transient congestion or any
other causes for nonstationary bottleneck links. Given thelist of
200 target IP addresses, each source nodeS probes each IP address
10 times using Pathneck. After probing each target IP address, S
randomly selects 8 nodes from the set of 22 source nodes as its
candidate overlay nodes and probes each of these 8 nodes 10 times.
This probing methodology is designed to study the effectiveness
of overlay routing in avoiding bottleneck links in a fair manner, as
the probing of the following three paths occur very close in time:
S → D, S → S′, andS′ → D, whereS′ is overlay node andD is
destination node. The upper bound for the bottleneck link available
bandwidth is calculated based on the largest gap value in thepath
across the 10 probing results.

For each destination from a given source, we calculate the lower
bound and upper bound for the available bandwidth of the pathas
the lowest and highest upper bound on bottleneck link available
bandwidth calculated by Pathneck in the 10 probings for thatpath.
When composing two paths such asS → S′ with S′ → D, the
lower bound of this overlay path is assumed to be the minimum of
the two lower bound values from the individual paths. The upper
bound of an overlay path is calculated in the same manner to have
a conservative estimate of the available bandwidth. We onlycon-
sider the effectiveness of overlay routing by going througha single
intermediate node, similar to previous studies.
Results: Of the 63, 440 overlay attempts,i.e., routing to a desti-
nation by going through an intermediate node,52.72% areuseful,
which means that overlay routing improves either the lower or the
upper bound on the available bandwidth of the path. Note thatwe
are not considering other metrics such as latency or packet loss.
If we require both bounds to increase, the useful rate is15.92%;
the breakdown for improving only the lower bound or only the up-
per bound is17.39% and19.40%, respectively. The distribution
of the improvement in upper and lower bounds for the available
bandwidth is shown in Figure 13. The curves show that most im-
provements in the upper bound are less than 100Mbps while the
limit for the lower bound is 20Mbps.

We now examine more closely how useful the overlay nodes
are in improving the available bandwidth bounds from each source
node to the200 randomly selected destinations. We found that for
most sources almost all 22 overlay nodes can be used for reaching
somedestinations with improved performance. A few exceptions
stand out: the mazu1 site finds only 8 out of 22 nodes useful in
terms of improving available bandwidth, and the cornell site finds
18 nodes useful. One possible reason is that the paths between
these two sites and the chosen destinations already have good per-
formance, hence overlay routing does not help. Another possible
explanation is that the bottleneck is near the source, so again over-

lay routing cannot help. Among the other sites, where most ofthe
randomly selected overlay nodes can help in improving available
bandwidth, we studied the data in more detail to see whether any
particular overlay nodes are always helpful for a given source node.
Surprisingly, the answer isyes. In fact, for most source nodes, there
are 2 to 3 overlay nodes that can improve performance for more
than90% of the cases examined. For example, when using vine-
yard as a source, jfk1, bkly-cs, and purdue all prove to be useful
as overlay nodes for92% of the destinations. Such information
is very helpful in making overlay routing decisions, as we discuss
below.
Discussion:The study presented here has several important impli-
cations for how to select overlay nodes and for improving overlay
routing strategies. Overlay node selection typically involves con-
tinuous probing and monitoring between the source node and the
overlay node, and between the overlay node and the destination
node. This solution is not scalable if one has to probe exhaustively
for every combination of destinations and candidate overlay nodes.
To minimize measurement overhead, one can make use of the topo-
logy information to predict how likely an intermediate overlay node
can help improve performance to a particular destination. Pathneck
presents two opportunities here: (1) Pathneck is very helpful in
identifying both the location of stable bottleneck links and overlay
nodes that often seem helpful in avoiding such links. (2) Pathneck
is light-weight enough to be used on-demand to decide which up-
stream provider to use for routing bandwidth-intensive applications
or applications requiring a minimal amount of bandwidth to func-
tion, e.g.,multimedia streaming.

6.2 Multihoming
Large enterprise networks oftenmultihome to different

providers. The multihomed network usually has its own Au-
tonomous System (AS) number and exchanges routing informa-
tion with its upstream providers via the Border Gateway Protocol
(BGP). The original motivation for multihoming was to achieve
resilient network connectivity or redundancy in case the connectiv-
ity to one ISP fails or one of the ISPs experiences severe routing
outages. Multihoming can not only increase the availability of net-
work connectivity, but can also improve performance by allowing
multihomed customers to route traffic through different upstream
providers based on the routing performance to a given destination.
A recent study [8] has shown that, by carefully choosing the right
set of upstream providers, high-volume content providers can gain
significant performance benefit from multihoming.

The performance benefit offered by multihoming depends highly
on the routing path diversity and the location of failures orper-
formance bottlenecks. For example, if a network is multihomed
to two providers that route large portions of its traffic via paths
with significant overlap, then the benefit of multihoming will be
sharply diminished since it will not be able to avoid bottlenecks in
the shared paths. As a result, we consider the following two prob-
lems: (1) Given the set of popular destinations a network frequently
accesses, which upstream provider should the network consider us-
ing? (2) Given a set of upstream providers, which provider should
be used to reach a given destination? Clearly we would like todo
the selection without expensive probing. We show that Pathneck
can help answer both these questions. To the best of our knowl-
edge, this is the first study to examine the benefit of multihoming
to avoid bottleneck links by quantifying the improvement inavail-
able bandwidth.
Methodology: To understand the effect of multihoming on avoid-
ing bottleneck links, one would ideally probe from the same
source to each of several destinations through different upstream



Table 6: Grouping based on coarse-grained geographic prox-
imity.

Group name Group member Useful rate
sf bkly-cs, ucsc, stanford 94%
nyc princeton, jhu, bu, 99%

umd, rpi, mit-pl, dartmouth, cmu
kansas ku, wustl 90%
chicago depaul, umich, uky, northwest, msu, 98%
britain cam-uk, ac-uk 17%
korea kaist-kr, snu-kr 74%

providers. A previous study [8] simulated this by probing from
nodes within the same city but connected through different up-
stream providers. Unfortunately, very few of our probe nodes are
located in the same city and have different upstream providers. We
simulate this by choosing 22 probing sources belonging to differ-
ent, but geographically close, organizations, as is shown in Table 6.
We treat the members in the same group as nodes within the same
city. While this is a simplification, we note that the geographic dis-
tance between any two nodes within the same group is small rela-
tive to the diverse set of7, 090 destinations we selected for probing.

To evaluate the effectiveness of multihoming, for each geo-
graphic group, we examine the bounds on the available bandwidth
of the paths from each member in the group to the same destina-
tion. If the improvement in the lower bound or the upper bound
from the worst path compared with any other path in the group is
more than 50% of original value, then we declare multihomingto
beuseful. Note that similar to the overlay routing study, our metric
only considers available bandwidth; for some applications, other
path properties such as latency and cost could be more important.
Results: Among all 42, 285 comparisons we are able to make
across all probing locations, more than78% of them are useful
cases. This is very encouraging and shows that multihoming signif-
icantly helps in avoiding bottleneck links. However, theseresults
may be overly optimistic given our destination set and the diffi-
culty in discovering bottlenecks at the destination site. First, many
of the probe destinations selected are not stub networks andmost
of them do not correspond to addressable end hosts. Furthermore,
firewalls often drop outgoing ICMP packets, thus rendering Path-
neck ineffective at identifying bottleneck at some destination sites.
Nevertheless, our results suggest that multihoming is veryeffective
at avoiding bottleneck links near the source or inside the network
core. When we are more conservative and we require both the up-
per bound and the lower bound to improve by 50%, then the useful
rate is reduced to exactly 50%.

Examining the results for individual groups in Table 6 reveals
some interesting characteristics. First of all, the biggerthe group,
the higher the useful rate. For the two sites outside North America
– britain and korea, the useful rates are significantly lower. We
conjecture that the transoceanic link is the main bottleneck link and
it cannot easily be avoided by choosing a nearby source node within
the same country. Also, these two groups have only two members,
so they have fewer choices.

Intuitively one would expect that as one adds more service
providers, there is a diminishing return for multihoming. An earlier
study [8] has shown this with respect to reducing download time
for Web objects. We now examine this effect using available band-
width as the performance metric. Figure 14 shows how the useful
rate increases with the number of providers. We see that there is
a fairly steady increase, even for higher numbers of providers. We
plan to investigate this further using more probe source locations.
Discussion: The results of the multihoming study are quite en-
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Figure 14: Improvement in avoiding bottleneck links with in-
crease in providers.

couraging. Not only do they suggest that multihoming can yield
significant benefits, but they also show that information collected
by Pathneck can be used to select the upstream providers.

7. RELATED WORK
Bandwidth estimation techniques [14, 22], specifically available

bandwidth estimation algorithms [13, 20, 26, 18, 30, 36], measure
network throughput, which is closely related to congestion. How-
ever, they provide no location information for the congestion point.
Also, all these tools, except cprobe [13], need the cooperation of
the destination, which makes them very hard to deploy. Packet loss
rate is another important metric that is related to user throughput,
especially for TCP traffic [27]. Tools that focus on loss ratein-
clude Sting [32], which measures the network path loss rate,and
Tulip [23], which can pinpoint the packet loss position.

The tools that are most closely related to Pathneck include Car-
touche [17], Packet Tailgating [29], BFind [10] and Pathchar [19].
Cartouche [17] uses a packet train that combines packets of dif-
ferent sizes and exploits differences in how different-sized packets
are handled to measure the bandwidth for any segment of the net-
work path. The bottleneck location can naturally be deducedfrom
its measurement results. Packet Tailgating [29] also combines load
packets and measurement packets, but instead of letting measure-
ment packets expire, it expires the load packets. Both Cartouche
and Packet Tailgating require two end control.

BFind [10] detects the bottleneck position by injecting a steady
UDP flow into the network path, and by gradually increasing its
throughput to amplify the congestion at the bottleneck router. At
the same time, it uses Traceroute to monitor the RTT changes to
all the routers on the path, thus detecting the position of the most
congested link. Concerns due the overhead generated by the UDP
flow force BFind to only look for a bottleneck with available band-
width of less than 50Mbps. Even then, considering its measure-
ment time, its overhead is fairly high, which is undesirablefor a
general-purpose probing tool.

Pathchar [19] estimates the capacity of each link on a network
path. The main idea is to measure the data transmission time on
each link. This is done by taking the difference between the RTTs
from the source to two adjacent routers. To filter out measurement
noise due to factors such as queueing delay, pathchar needs to send
a large number of probing packets, identifying the smallestRTT
values for the final calculation. As a result, pathchar also has a
large probing overhead.

Due to the lack of a measurement tool to identify bottleneck lo-
cation, there has not been much work on analyzing Internet bottle-
necks. We are only aware of the analysis in [10], which shows that



most bottlenecks are on edge and peering links. Pathneck over-
comes some of the limitations in BFind, thus allowing us to per-
form a more extensive bottleneck study. The large BGP database
that we have access to also enables us to probe the Internet ina
more systematic way, thus giving our analysis a broader scope.

Several studies have shown that overlay routing [31, 33], multi-
path routing [12, 25, 28], and multihoming [8, 5] benefit end user
communication by reducing the packet loss rate and increasing end-
to-end throughput. These projects primarily focus on link failure
or packet loss, although some consider latency and throughput as
well. A recent study compares the effectiveness of overlay routing
and multihoming, considering latency, loss rate, and throughput as
metrics [9]. In contrast, our work approaches the problem from
a different angle— by identifying the location of the bottleneck
we can study how overlay routing and multihoming can be used to
avoid bottlenecks. Our work shows the benefit of overlay routing
and multihoming and suggests efficient route selection algorithms.

8. CONCLUSION AND FUTURE WORK
In this paper, we present a novel light-weight, single-end active

probing tool –Pathneck– based on a probing technique called Re-
cursive Packet Train (RPT). Pathneck allows end users to efficiently
and accurately locate bottleneck links on the Internet. We show that
Pathneck can identify a clearly-defined bottleneck on almost 80%
of the Internet paths we measured. Based on an extensive set of
Internet measurements we also found that up to 40% of the bot-
tlenecks are inside ASes, contrary to common assumptions. We
showed how Pathneck can help infer bottleneck location on a path
without probing. Finally, we illustrated how Pathneck can be used
to guide overlay routing and multihoming.

This paper analyzes only some aspects of Internet bottlenecks
and many issues require further study, including the stability of
bottlenecks, the impact of topology and routing changes on bot-
tlenecks, and the distribution of bottlenecks across different (levels
of) ASes. We also hope to improve Pathneck, for example by study-
ing how configuration parameters such as the load packet size, the
number of load packets, and the initial probing rate of RPT affect
the measurement accuracy.
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