Locating Internet Bottlenecks:
Algorithms, Measurements, and Implications

Ningning Hu
Carnegie Mellon University
hnn@cs.cmu.edu

Peter Steenkiste
Carnegie Mellon University
prs@cs.cmu.edu

ABSTRACT

The ability to locate network bottlenecks along end-to-gaths
on the Internet is of great interest to both network opesatord
researchers. For example, knowing where bottleneck lir&ksnet-
work operators can apply traffic engineering either at therdo-
main or intradomain level to improve routing. Existing tedli-
ther fail to identify thelocation of bottlenecks, or generate a large
amount of probing packets. In addition, they often requeeas
to both end points. In this paper we presBathneck a tool that
allows end users to efficiently and accurately locate thddyatck
link on an Internet path. Pathneck is based on a novel prdbitg
nique called Recursive Packet Train (RPT) and does notnequat
cess to the destination. We evaluate Pathneck using widdrates-
net experiments and trace-driven emulation. In additianpresent
the results of an extensive study on bottlenecks in theretess-
ing carefully selected, geographically diverse probingrees and
destinations. We found that Pathneck can successfullyctiets-
tlenecks for almost 80% of the Internet paths we probed. e al
report our success in using the bottleneck location andvoiitid
bounds provided by Pathneck to infer bottlenecks and taddwai-
tlenecks in multihoming and overlay routing.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions — Network Monitoring

General Terms
Algorithms, Measurement, Experimentation

Keywords

Active probing, packet train, bottleneck location, avaiéaband-
width

1. INTRODUCTION

The ability to locate network bottlenecks along Internethpa
is very useful for both end users and Internet Service Persid

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGCOMM’'04,Aug. 30-Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/000855.00.

Li (Erran) Li
Bell Laboratories
erranlli@bell-labs.com zmao@eecs.umich.edu

Zhuoqging Morley Mao
University of Michigan

Jia Wang
AT&T Labs — Research

jlawang@research.att.com

(ISPs). End users can use it to estimate the performance okth
work path to a given destination, while an ISP can use it toldyi
locate network problems, or to guide traffic engineerinpegitat
the interdomain or intradomain level. Unfortunately, ivesy hard
to identify the location of bottlenecks unless one has acteink
load information forall the relevant links. This is a problem, espe-
cially for regular users, because the design of the Intatoes not
provide explicit support for end users to gain informatiboat the
network internals. Existing active bandwidth probing walso fall
short. Typically they focus on end-to-end performance [I8),26,
30, 36], while providing ndocationinformation for the bottleneck.
Some tools do measure hop-by-hop performance [19, 10]hbirt t
measurement overhead is often very high.

In this paper, we present an active probing todPathneck—
based on a novel probing technique called Recursive Packet T
(RPT). It allows end users to efficiently and accurately tedzot-
tleneck links on the InternefThe key idea is to combine measure-
ment packets and load packets in a single probing packet.trai
Load packets emulate the behavior of regular data traffidewhi
measurement packets trigger router responses to obtaimehe
surements. RPT relies on the fact that load packets interieith
competing traffic on the links along the path, thus changhey t
length of the packet train. By measuring the changes usinm#a-
surement packets, the position of congested links can bered.
Two important properties of RPT are that it has low overhazd a
does not require access to the destination.

Equipped with Pathneck, we conducted extensive measutsmen
on the Internet among carefully selected, geographicalrgrse
probing sources and destinations to study the diversitystatullity
of bottlenecks on the Internet. We found that, contrary eodbm-
mon assumption that most bottlenecks are edge or peerikg, lin
for certain probing sources, up to 40% of the bottlenecktlona
are within an AS. In terms of stability, we found that inte&Aot-
tlenecks are more stable than intra-AS bottlenecks, whdevel
bottlenecks are more stable than router-level bottlenedksalso
show how we can use bottleneck location information and oug
bounds for the per-link available bandwidth to succesgfinfer
the bottleneck locations for 54% of the paths for which weehav
enough measurement data. Finally, using Pathneck resoitsd
diverse set of probing sources to randomly selected déistirsa
we found that over half of all the overlay routing attemptgiove
bottleneck available bandwidth. The utility of multihorgim im-
proving available bandwidth is over 78%.

This paper is organized as follows. We first describe the-Path
neck design in Section 2 and then validate the tool in Se@&ion

Using Pathneck, we probed a large number of Internet déistimsa

to obtain several different data sets. We use this data tty she
properties of Internet bottlenecks in Section 4, to infettlboeck
locations on the Internet in Section 5, and to study the icagibns

for overlay routing and multihoming in Section 6. We discuss
lated work in Section 7. In Section 8 we summarize and discuss
future work.

2. DESIGN OF PATHNECK

Our goal is to develop a light-weight, single-end-controttle-
neck detection tool. In this section, we first provide somekba
ground on measuring available bandwidth and then deschibe t
concept of Recursive Packet Trains and the algorithms uged b
Pathneck.

2.1 Measuring Available Bandwidth

In this paper, we define theottleneck linkof a network path as
the link with the smallest available bandwidtte., the link that
determines the end-to-end throughput on the path. aMadlable
bandwidthin this paper refers to the residual bandwidth, which is
formally defined in [20, 18]. Informally, we definechoke linkas
any link that has a lower available bandwidth than the pgptth
from the source to that link. The upstream router for the eHokk
is called thechoke pointor choke router The formal definition of
choke link and choke point is as follows. Let us assume an end-
to-end path from sourcé = Ry to destinationD = R,, through
routersRy, Rz, ..., Rn—1. Link L; = (R;, Ri+1) has available
bandwidthA;(0 < 7 < n). Using this notation, we define the set
of choke linksas:

CHOKEr = {Li|35,0 < j <n,k = argmino<i<; Ai}
and the corresponding setdfoke pointgor choke routersare
CHOKERr = {Ri|Lx € CHOKEL,0 <k <n}

Clearly, choke links will have less available bandwidth keesytget
closer to the destination, so the last choke link on the path w
be thebottleneck linkor the primary choke link. We will call the
second to last choke link theecondary choke linland the third to
last one theertiary choke linketc.

Let us now review some earlier work on available bandwidth
estimation. A number of projects have developed tools thtt e
mate the available bandwidth along a network path [20, 183Q6
36, 13]. This is typically done by sending a probing packaintr
along the path and by measuring how competing traffic alorg th
path affects the length of the packet train (or the gaps tesivtiee
probing packets). Intuitively, when the packet train traes a link
where the available bandwidth is less than the transmissits
of the train, the length of the traime., the time interval between
the head and tail packets in the train, will increase. Thisaase
can be caused by higher packet transmission times (on loaceap
ity links), or by interleaving with the background traffice@wily
loaded links). When the packet train traverses a link whiee t
available bandwidth is higher than the packet train trassion
rate, the train length should stay the same since there cHomul
little or no queuing at that link. By sending a sequence dhsa
with different rates, it is possible to estimate the avddatand-
width on the bottleneck link; details can be found in [18,.28%ing
the above definition, the links that increase the length eftéacket
train correspond to the choke links since they representirike
with the lowest available bandwidth on the partial pathéetad by
the train so far.

Unfortunately, current techniques only estimate endrt-e
available bandwidth since they can only measure the traigthe

measurement
packets

load packets measuremen
_ l=—— 60 packets ———= pa?kets
| 1] 2| [30] 255 | 255 | | 255]30] | 2] 1
] — e
60B 500B 30 packets

TTL
Figure 1: Recursive Packet Train (RPT).

at the destination. In order to identify the bottleneck tama we
need to measure the train lengtheachlink. This information can
be obtained with a novel packet train design, called a Reaurs
Packet Train, as we describe next.

2.2 Recursive Packet Train

Figure 1 shows an example of a Recursive Packet Train (RPT);
every box is a UDP packet and the number in the box is its TTL
value. The probing packet train is composed of two types okpa
ets: measurement packets and load packdeasurement packets
are standard traceroute packeis,, they are 60 byte UDP packets
with properly filled-in payload fields. The figure shows 30 mea
surement packets at each end of the packet train, which allow
us to measure network paths with up to 30 hops; more measure-
ment packets should be used for longer paths. The TTL values o
the measurement packets change linearly, as shown in the figu
Load packetsare used to generate a packet train with a measur-
able length. As with the IGI/PTR tool [18], load packets sldou
be large packets that represent an average traffic load. /8005
byte packets as suggested in [18]. The number of load patkets
the packet train determines the amount of background tréféit
the train can interact with, so it pays off to use a fairly Idrajn.

In our experiment, we set it empirically in the range of 30 @1
Automatically configuring the number of probing packetsusife
work.

The probing source sends the RPT packets in a back-to-back
fashion. When they arrive at the first router, the first andlaise
packets of the train expire, since their TTL values are 1. fesalt,
the packets are dropped and the router sends two ICMP packets
back to the source [7]. The other packets in the train aredoted
to the next router, after their TTL values are decrementeage ©
the way the TTL values are set in the RPT, the above process is
repeated on each subsequent router. The name “recursivetds
to highlight the repetitive nature of this process.

At the source, we can ughe time gap between the two ICMP
packets from each routeo estimate the packet train length on the
incoming link of that router. The reason is that the ICMP pack
ets are generated when the head and tail packets of the tmin a
dropped. Note that the measurement packets are much sthalfer
the total length of the train, so the change in packet traigtle due
to the loss of measurement packets can be neglected. Fopkxam
in our default configuration, each measurement packet atsor
only 0.2% the packet train length. We will call the time diface
between the arrival at the source of the two ICMP packets fram
same router thpacket gap

2.3 Pathneck — The Inference Tool

RPT allows us to estimate the probing packet train lengthach e
link along a path. We use the gap sequences obtained fronpé set
probing packet trains to identify the location of the batéek link.
Pathneck detects the bottleneck link in three steps:

Step 1:Labeling of gap sequence§or each probing train, Path-
neck labels the routers where the gap value increases sagrtiff
as candidate choke points.

gap value
hill point

valley point

hop coun

Figure 2: Hill and valley points.

gap value RRREEEE 6
I I
step change: @ L] !
Sx ! 7:
T R LN
.
2 S n
r P e | ——step
[A
I I
X J
*************** ' hop count
0 p

Figure 3: Matching the gap sequence to a step function.

Step 2: Averaging across gap sequenceRouters that are fre-
quently labeled as candidate choke points by the probingstia
the set are identified as actual choke points.

Step 3: Ranking choke pointsPathneck ranks the choke points
with respect to their packet train transmission rate.

In the remainder of this section, we describe in detail the@hms
used in each of the three steps.

2.3.1 Labeling of Gap Sequences

Under ideal circumstances, gap values only increase (dha-
able bandwidth on a link is not sufficient to sustain the rdtte
incoming packet train) or stay the same (if the link has ehoug
bandwidth for the incoming packet train), but it should mede-
crease. In reality, the burstiness of competing traffic awknse
path effects add noise to the gap sequence, so we preprbeess t
data before identifying candidate choke points. We firstoegrany
data for routers from which we did not receive both ICMP p#ske
If we miss data for over half the routers, we discard the erga-
quence. We then fix thieill andvalley points where the gap value
decreases in the gap sequence (Figure 2). A hill point is efin
asp- in a three-point groupgf , p2, p3) with gap values satisfying
g1 < g2 > gz. Avalley point is defined in a similar way with
g1 > g2 < g3. Since in both cases, the decrease is short-term (one
sample), we assume it is caused by noise and we reglawgth
the closest neighboring gap value.

We now describe the core part of the labeling algorithm. Teai
is to match the gap sequence to a step function (Figure 3);ewhe
each step corresponds to a candidate choke point. Given segap
guence withien gap values, we want to identify the step function
that is the best fit, where “best” is defined as the step fundto
which the sum of absolute difference between the gap sequenc
and the step function across all the points is minimal. Welireq
the step function to have clearly defined steps, all steps must
be larger than a thresholdtgp) to filter out measurement noise.
We use 100mnicroseconds (us) as the threshold. This value is
relatively small compared with possible sources of errobé dis-
cussed in Section 2.4), but we want to be conservative irifglarg
candidate choke points.

We use the following dynamic programming algorithm to iden-

quence asdist_sumli, j| = 3.1 _. |avgli, j] — gr|. Letopt[i, j,]
denote the minimal sum of the distance sums for the segments b
tween hops andj (including hops andj), given that there are at
mosti steps. The key observation is that, given the optimal amjtt

of a subsequence, the splitting of any shorter internalesyesnce
delimited by two existing splitting points must be an optirsialit-
ting for this internal subsequence. Therefargi[i, j,(] can be re-
cursively defined as the follows:

1=0&i<j,
1>0&4<j.

dist_sumli, j)
min{opt[i, j,1 —

opt[i, j,1] = {

1], opt2[i, j, 1]}

min{opt[i, k, 1] + optlk + 1,5, — 11 — 1] :
i<k<j0<l<l,

|LS[i, k, 1] — FS[k + 1,4, — 1 — 1]| > step}

opt2[i, 5, 1]

Here LS[i, k, 1] denotes the last step value of the optimal step
function fitting the gap subsequence betweamdk with at most
I steps, and"S[k + 1, 5,1 — I — 1] denotes the first step value of
the optimal step function fitting the gap subsequence betweel
andj with at mostl — [; — 1 steps.

The algorithm begins witlh = 0 and then iteratively improves
the solution by exploring larger values lofEvery timeopt2[i, j, (]
is used to assign the value fapt[i, 7,], a new splitting poink is
created. The splitting point is recorded in a §&t[i, 7, 1], which
is the set of optimal splitting points for the subsequenadsveen
1 and j using at most splitting points. The algorithm returns
SP0,len — 1,len — 1] as the set of optimal splitting points for
the entire gap sequence. The time complexity of this algarits
O(len®), which is acceptable considering the small valud cof
on the Internet. Since our goal is to detect the primary clpaket,
our implementation only returns the top three choke poiritis thie
largest three steps. If the algorithm does not find a validtsy
point,i.e., SP[0,len—1,len—1] = @, it simply returns the source
as the candidate choke point.

2.3.2 Averaging Across Gap Sequences

To filter out effects caused by bursty traffic on the forward an
reverse paths, Pathneck uses results from multiple praibéigs
(e.g., 6 to 10 probing trains) to compuionfidenceinformation
for each candidate choke point. To avoid confusion, we vg# u
the termprobing for a single RPT run and the terprobing set
for a group of probings (generally 10 probings). The outcahe
Pathneck is the summary result for a probing set.

For the optimal splitting of a gap sequence, let the sequefice
step values bev; (0 < ¢ < M), wherelM is the total number of
candidate choke points. The confidence for a candidate ghumké
1 (1 <i< M)is computed as

1

SVU;

1

SV;i—1

1

SV;i—1

conf;

Intuitively, the confidence denotes the percentage of abil
bandwidth change implied by the gap value change. For thaape
case where the source is returned as the candidate chokewwein
set its confidence value to 1.

Next, for each candidate choke point in the probing set we cal
culate d_rate as the frequency with which the candidate choke
point appears in the probing set witbnf > 0.1. Finally, we
select those choke points withrate > 0.5. Therefore the final
choke points for a path are the candidates that appear wit hi

tify the step function. Assume we have a gap subsequence be-confidence in at least half of the probings in the probing det

tween hop: and hopj: gi,...,g; (i < j7), and let us define
avglt, j] = >°1_, gr/(j—i+1), and the distance sum of the subse-

Section 3.4, we quantify the sensitivity of Pathneck to ¢heara-
meters.

2.3.3 Ranking Choke Points

able to “see” downstream links with higher or slightly loveamil-

For each path, we rank the choke points based on their averageable bandwidth.

gap value in the probing set. The packet train transmissiteV?

is R = ts/g, wherets is the total size for all the packets in the
train andg is the gap value. That is, the larger the gap value, the
more the packet train was stretched out by the link, sugugsti
lower available bandwidth on the corresponding link. Assute
we identify the choke point with the largest gap value as e b
tleneck of the path. Note that since we cannot control théetac
train structure at each hop, the RPT doesautially measure the
available bandwidth on each link, so in some cases, Patluwedé
select the wrong choke point as the bottleneck. For exarople,
path where the “true” bottleneck is early in the path, the cdtthe
packet train leaving the bottleneck can be higher than thiadole
bandwidth on the bottleneck link. As a result, a downstreau |
with slightly higher available bandwidth could also be itifted as

a choke point and our ranking algorithm will mistakenly stieas
the bottleneck.

Note that our method of calculating the packet train trassian
rate R is similar to that used by cprobe [13]. The difference is that
cprobe estimates available bandwidth, while Pathneckastis the
location of the bottleneck link. Estimating available baatith in
fact requires careful control of the inter-packet gap ferttiain [26,
18] which neither tool provides.

A number of factors could influence the accuracy of Pathneck.
First, we have to consider the ICMP packet generation time on
routers. This time is different for different routers andsgibly
for different packets on the same router. As a result, thesored
gap value for a router will not exactly match the packet ttaimgth
at that router. Fortunately, measurements in [16] and [hbjvs
that the ICMP packet generation time is pretty small; in ntases
it is between 100s and 50Qi.s. We will see later that over 95%
of the gap changes of detected choke points in our measutemen
are larger than 5Q8. Therefore, while large differences in ICMP
generation time can affect individual probings, they arkely to
significantly affect Pathneck bottleneck results.

Second, as ICMP packets travel to the source, they may experi
ence queueing delay caused by reverse path traffic. Sirecdelay
can be different for different packets, it is a source of meament
error. We are not aware of any work that has quantified reyzate
effects. In our algorithm, we try to reduce the impact of faitor
by filtering out the measurement outliers. Note that if we had
cess to the destination, we might be able to estimate thecingba
reverse path queueing.

Third, packet loss can reduce Pathneck’s effectivenessad Lo
packet loss can affect RPT’s ability to interleave with kgrokind

While Pathneck does not measure available bandwidth, we cantraffic thus possibly affecting the correctness of the tesubst
use the average per-hop gap values to provide a rough upper ormeasurement packets are detected by lost gap measureMetets.

lower bound for the available bandwidth of each link. We ideis
three cases:

Case 1:For a choke linkj.e., its gap increases, we know that the
available bandwidth is less than the packet train rate. Ehahe

rate R computed above is an upper bound for the available band-

width on the link.

Case 2:For links that maintain their gap relative to the previous
link, the available bandwidth is higher than the packentraieR,
and we useR as a lower bound for the link available bandwidth.

that it is unlikely that Pathneck would lose significant narsbof
load packets without a similar loss of measurement packais-
sidering the low probability of packet loss in general [28% do
not believe packet loss will affect Pathneck results.

Fourth, multi-path routing, which is sometimes used fodlbal-
ancing, could also affect Pathneck. If a router forwardskpesc
in the packet train to different next-hop routers, the gaasuee-
ments will become invalid. Pathneck can usually detect sasles
by checking the source IP address of the ICMP responses.rin ou

Case 3:Some links may see a decrease in gap value. This decreasdh€asurements, we do not use the gap values in such cases.

is probably due to temporary queuing caused by traffic mess,
and according to the packet train model discussed in [18kame
not say anything about the available bandwidth.

Considering that the data is noisy and that link availablediadth
is a dynamic property, these bounds should be viewed asoeghr
estimates. We provide a more detailed analysis for the biftidw
bounds on the bottleneck link in Section 3.3.

2.4 Pathneck Properties

Pathneck meets the design goals we identified earlier irséts
tion. Pathneck does not need cooperation of the destinait
can be widely used by regular users. Pathneck also has low ove
head. Each measurement typically uses 6 to 10 probing tcdins

30 to 100 load packets each. This is a very low overhead com-

pared to existing tools such as pathchar [19] and BFind [F}.
nally, Pathneck is fast. For each probing train, it takesutlooe
roundtrip time to get the result. However, to make sure we re-
ceive all the returned ICMP packets, Pathneck generallysviar

3 seconds — the longest roundtrip time we have observed on the

Internet — after sending out the probing train, and thersefiven

in this case, a single probing takes less than 5 seconds. din ad
tion, since each packet train probes all links, we get a stersi set
of measurements. This, for example, allows Pathneck tdifgtien
multiple choke points and rank them. Note however that Retkhn
is biased towards early choke points— once a choke pointrhas i
creased the length of the packet train, Pathneck may no idrege

Pathneck also has some deployment limitations. First, we di
covered that network firewalls often only forward 60 byte UDP
packets that strictly conform to the packet payload fornmsgadu
by standard Unix traceroute implementation, while theypdaay
other UDP probing packets, including the load packets inRfif.

If the sender is behind such a firewall, Pathneck will not w&in-
ilarly, if the destination is behind a firewall, no measureisefor
links behind the firewall can be obtained by Pathneck. Secrmh
without any firewalls, Pathneck may not be able to measure the
packet train length on the last link, because the ICMP pacsent
by the destination host cannot be used. In theory, the defstim
should generate a “destination port unreachable” ICMP aggss
for each packet in the train. However, due to ICMP rate lingjfi
the destination network system will typically only gener&a€EMP
packets for some of the probing packets, which often doednot
clude the tail packet. Even if an ICMP packet is generatethédin
the head and tail packets, thecumulatedCMP generation time
for the whole packet train makes the returned interval westh

Of course, if we have the cooperation of the destination, are c
get a valid gap measurement for the last hop by using a vatid po
number, thus avoiding the ICMP responses for the load psacket

3. VALIDATION

We use both Internet paths and the Emulab testbed [3] to-evalu
ate Pathneck. Internet experiments are necessary to saidyeek
with realistic background traffic, while the Emulab testipeovides
a fully controlled environment that allows us to evaluaté¢hRack

Table 1: Bottlenecks detected on Abilene paths. E ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
0 1 OLl\m

30M 7 50M /— X
Probe d_rate Bottleneck AS path 0.5ms L2 0.4md 3
destination| (Utah/CMU) | router IP (AS1-AS2)f ; %E
calren2 0.71/0.70 137.145.202.129 2150-2150

princeto¥ | 0.64/0.67 198.32.42.209 | 10466-10466

sox 0.62/0.56 199.77.194.41 | 10490-10490 Figure 4: Testbed configuration.
ogigb 0.71/0.72 | 205.124.237.10 | 210-4600 (Utah)
198.32.8.13 11537-4600 (CMU)

T ASTis bottleneck router's AS#AS2 s its post-hop router's AS#. Table 2: The testbed validation experiments

§ calren =wmwv. cal ren2. net, princeton =www. pri ncet on. edu,

§ SOX =vwwv. SOX. net , 0gig =www. ogi g. net . #| X | Y | Trace Comments _

1| 50| 20 | light-traceon all Capacity-determined

. i . . bottleneck
with known traffic loads. Besides the detection accuracyaise 2 | 50 | 50 | 35Mbpsexponentia-loadon | Load-determined bot
examine the accuracy of the Pathneck bandwidth bounds @&nd th Y, light-trace otherwise tleneck
sensitivity of Pathneck to its configuration parametersr ¥alida- 3| 20 | 20 | heavy-traceonY’, light-trace | Two-bottleneck case
tion does not study the impact of the ICMP generation time otherwise i

4| 20 | 20 | heavy-traceon X, light-trace | Two-bottleneck case
i i otherwise

3.1 Internet Va“da_tlon 51 50| 20 | 30% exponential-load on | The impact of reverse

For a thorough evaluation of Pathneck on Internet paths, we both directions traffic
would need to know the actual available bandwidth on all ithiesl
of a network path. This information is impossible to obtainmost source and destination, while nodes 1-8 are intermediatem
operational networks. The Abilene backbone, however,igi@ The Jink delays are roughly set based on a traceroute memsnte
its backbone topology and traffic load (5-minute SNMP sta8} from a CMU host tomw. yahoo. com The link capacities are
[1], so we decided to probe Abilene paths. configured using the Dummynet [2] package. The capacities fo

The experiment is carried out as follows. We used two souges jinks X andY depend on the scenarios. Note that all the testbed
host at the University of Utah and a host at Carnegie Melloivéfn nodes are PCs, not routers, so their properties such as Me IC
sity. Based on Abilene’s backbone topology, we chose 22ipgob generation time are different from those of routers. As ailtes
destinations for each probing source. We make sure thataféith the testbed experiments do not consider some of the roustede
11 major routers on the Abilene backbone is included in st leae factors.
probing path. From each probing source, we probed everjndest The dashed arrows in Figure 4 represent background traffie. T
tion 100 times, with a 2-second interval between two cOMS&EU hackground traffic is generated based on two real packegsrac
probings. To avoid interference, the experiments conduatéltah cajled light-trace and heavy-trace The light-trace is a sampled
and at CMU were run at different times. trace (using prefix filters on the source and destination IP ad

~Usingconf > 0.1 andd.rate > 0.5, we only detected 5 non- gresses) collected in front of a corporate network. Thditrifad
first-hop bottleneck links on the Abilene paths (Table 1)isTénot varies from around 500Kbps to 6Mbps, with a median load of

surprising since Abilene paths are known to be over-promitl, 2Mpps. Theheavy-tracds a sampled trace from an outgoing link
and we selected paths with many hops inside the Abilene 8. of 4 data center connected to a tier-1 ISP. The traffic loatkwar
d_rate values for the 100 probes originating from Utah and CMU rom 4Mbps to 36Mbps, with a median load of 8Mbps. We also
are very similar, possibly because they observed similagestion use a simple UDP traffic generator whose instantaneous tad f

conditions. By examining the IP addresses, we found thatoh 3 |55 an exponential distribution. We will refer to the loadrh this
the 4 caseswmw. 0gi g. net is the exception), both the Utah and generator asxponential-loadBy assigning different traces to dif-
CMU based probings are passing through the same bottleméck | ferent links, we can set up different evaluation scenaisce all
close to the destination; an explanation is that thesedettks are the hackground traffic flows used in the testbed evaluatievery

very stable, possibly because they are constrained by &ipadity. bursty, they result in very challenging scenarios.
Unfortunately, all three bottlenecks are outside Abilesewe do Table 2 lists the configurations of five scenarios that allaw u
not have the load data. to analyze all the important properties of Pathneck. Fohege-

For the path tomwv. ogi g. net , the bottleneck links appear parip, we use Pathneck to send 100 probing trains. Since thes
to be two different peering links going to AS4600. For thehpat scenario are used for validation, we only use the results/foch
from CMU to www. 0gi g. net , the outgoing link of the bottle- \ye received all ICMP packets, so the percentage of validipgois
neck router 198.32.163.13 is an OC-3 link. Based on _the_ I|r_1k lower than usual. During the probings, we collected detaited
capacities and SNMP data, we are sure that the OC-3 link is in- §ata on each of the routers allowing us to compare the praiing
deed the bottleneck. We do not have the SNMP data for the Utah gits with the actual link load. We look at Pathneck perfanoe
links, so we cannot validate the results for the path fromhUta for both probing setsi.g., result for 10 consecutive probings as re-
Www. ogl g. net . ported by Pathneck) and individual probings. For probirtg,see

. . useconf > 0.1 andd_rate > 0.5 to identify choke points. The
3.2 Testbed Validation real background traffic load is computed as the average twaté

We use the Emulab testbed to study the detailed properties ofinterval that includes the 10 probes, which is around 60 rsgs0
Pathneck. Since Pathneck is a path-oriented measurenognveo For individual probings, we only usen f > 0.1 for filtering, and
use a linear topology (Figure 4). Nodes 0 and 9 are the probing the load is computed using a 23 packet trace centered around
the probing packets.e.,we use the instantaneous load.

' A meaningful study of the ICMP impact requires access tediff
ent types of routers with real traffic load, but we do not has@eas
to such facilities.

change cap of link Y: 21-30Mbps, with no load change load on link Y (50Mbps): 20~29Mbps
500 00

7000 7000

6500

6500

6000 6000

gap value (us)
gap value (us)

5500 5500

5000 5000

4500
6 8 [2 4 6 8

4500
0 2

4
hop ID

Figure 5: Comparing the gap sequences for capacity (left) ah
load-determined (right) bottlenecks.

3.2.1 Experiment 1 — Capacity-determined Bottleneck

In this experiment, we set the capacities’dfandY to 50Mbps
and 20Mbps, and udight-traceon all the links; the starting times
within the trace are randomly selected. All 100 probinggdehop
6 (i.e.,link Y) as the bottleneck. All other candidate choke points
are filtered out because of a low confidence vaiue,(conf <
0.1). Obviously, the detection results for the probing setsadse
100% accurate.

This experiment represents the easiest scenario for Réthree,
the bottleneck is determined by the link capacity, and thekba
ground traffic is not heavy enough to affect the bottlenedalo
tion. This is however an important scenario on the InterAdarge
fraction of the Internet paths fall into this category besmonly a
limited number of link capacities are widely used and theacity
differences tend to be large.

3.2.2 Experiment 2 — Load-determined Bottleneck

Besides capacity, the other factor that affects the battkempo-
sition is the link load. In this experiment, we set the capesiof
both X andY to 50Mbps. We use the 35Mbpsgponential-loadn
Y and thdight-traceon other links, so the difference in traffic load
on X andY determines the bottleneck. Out of 100 probings, 23
had to be discarded due to ICMP packet loss. Using the rentgaini
77 cases, the probing sets always correctly ideififys the bottle-
neck link. Of the individual probings, 69 probings corrgalketect
Y as the top choke link, 2 probings pick lifR7, R8) (i.e.,the link
afterY) as the top choke link anti is detected as the secondary
choke link. 6 probings miss the real bottleneck. In summtry,
accuracy for individual probings is 89.6%.

3.2.3 Comparing the Impact of Capacity and Load

To better understand the impact of link capacity and loadein d
termining the bottleneck, we conducted two sets of simpliég-
periments using configurations similar to those used inx@ats

1 . ————
- yal
0.9+ - — |
, J
08 py S |
- //
0.7 I / B
! -
L / |

0.6 ;
=) L / 4
g o5 ,) S

-
0.4F I / 4
,
p,

03F / B

02k / P

0.1/ — — - wrong

,,/’/
0 " L L L L L L L L L

4 5 6 8 9 10
bandwidth difference (Mbps)

Figure 6: Cumulative distribution of bandwidth difference in
experiment 3.

changes in exactly the same wag., it increases from 21Mbps
to 30Mbps. However, the gap sequences are quite differeme. T
gap increases in the left figure are regular and match thecitgpa
changes, since the length of the packet train is strictlybgethe
link capacity. In the right figure, the gaps at the destimatoe
less regular and smaller. Specifically, they do not refleetavail-
able bandwidth on the linki.., the packet train rate exceeds the
available bandwidth). The reason is that the back-to-baock-p
ing packets compete un-fairly with the background traffid #rey
can miss some of the background traffic that should be capture
This observation is consistent with the principle behindPRJ26]
and IGI/PTR [18], which states that the probing rate shoaldét
properly to accurately measure the available bandwidths &k-
plains why Pathneck’s packet train rate at the destinatioxiges
only an upper bound on the available bandwidth. Figure 5 show
that the upper bound will be tighter for capacity-deterrdibettle-
necks than for load-determined bottlenecks. The fact timgap
changes in the right figure are less regular than that in fhéide
ure also confirms that capacity-determined bottlenecksasier to
detect than load-determined bottlenecks.

3.2.4 Experiments 3 & 4 — Two Bottlenecks

In these two experiments, we set the capacities of BoindY
to 20Mbps, so we have two low capacity links and the bottlknec
location will be determined by load. In experiment 3, we Use t
heavy-tracefor Y and thelight-trace for other links. The probing
set results are always correct., Y is detected as the bottleneck.
When we look at the 86 valid individual probings, we find théat
is the real bottleneck in 7 cases; in each case Pathneckssfigite
identifies X as theonly choke link, and thus the bottleneck. In the
remaining 79 caseg/ is the real bottleneck. Pathneck correctly
identifiesY in 65 probings. In the other 14 probings, Pathneck
identifies X as the only choke linki.e., Pathneck missed the real
bottleneck linkY. The raw packet traces show that in these 14
incorrect cases, the bandwidth difference betw&eandY” is very
small. This is confirmed by Figure 6, which shows the cumwdati
distribution of the available bandwidth difference betweé and

1 and 2. Figure 5 shows the gap measurements as a functioa of th Y for the 14 wrong cases (the dashed curve), and for all 86 cases

hop count ¢ axis). In the left figure, we fix the capacity of to
50Mbps and change the capacity Y¥ffrom 21Mbps to 30Mbps

(the solid curve). The result shows that if two links haveiEim
available bandwidth, Pathneck has a bias towards the fikstTihis

with a step size of 1Mbps; no background traffic is added on any is because the probing packet train has already been scebgh

link. In the right figure, we set the capacities of bathandY
to 50Mbps. We apply different CBR loads 16 (changing from
29Mbps to 20Mbps) while there is no load on the other links: Fo
each configuration, we executed 10 probings. The two figums p
the median gap value for each hop; for most points, the 30eT0 p
centile interval is under 2Q6.

In both configurations, the bottleneck available bandwidth

the first choke linkX, so the second choke liflk can be hidden.
As a comparison, we apply theavy-traceo both X andY in
experiment 4. 67 out of the 77 valid probings correctly idgnk
as the bottleneck; 2 probings correctly idenfifyas the bottleneck;
and 8 probings miss the real bottleneck livikand identify X as
the only bottleneck. Again, if multiple links have similaralable
bandwidth, we observe the same bias towards the early link.

Table 3: The number of times of each hop being a candidate
choke point.

Router 1 213 4 5 6 7
conf > 0.1 241 18| 5|21 | 20| 75| 34
d_rate > 0.5 6 0O 2 0| 8| 36

3.2.5 Experiment 5 — Reverse Path Queuing

To study the effect of reverse path queuing, we set the cigmci
of X andY to 50Mbps and 20Mbps, and appdxponential-load
in both directions on all links (except the two edge links)heT
average load on each link is set to 30% of the link capacity. We
had 98 valid probings. The second row in Table 3 lists the rermb
of times that each hop is detected as a candidate choke peint (
with conf > 0.1). We observe that each hop becomes a candidate
choke point in some probings, so reverse path traffic doestaffie
detection accuracy of RPTs.

However, the use of probing sets reduces the impact of revers
path traffic. We analyzed the 98 valid probings as 89 sets 0bho
secutive probings each. The last row of Table 3 shows how ofte
links are identified as choke pointd_tate > 0.5) by a probing
set. The real bottleneck, hop 6, is most frequently idetifie the
actual bottleneck (last choke point), although in some sa®
next hop {.e., hop 7) is also a choke point and is thus selected as
the bottleneck. This is a result of reverse path traffic. Nadlynthe
train length on hop 7 should be the same as on hop 6. However, if
reverse path traffic reduces the gap between the hop 6 ICME pac
ets, or increases the gap between the hop 7 ICMP packetd| it wi
appear as if the train length has increased and hop 7 willieddd
as a choke point. We hope to tune the detection algorithniioces
the impact of this factor as part of future work.

3.3 Validation of Bandwidth Bounds

A number of groups have shown that packet trains can be used
to estimate the available bandwidth of a network path [26 218
However, the source has to carefully control the inter-pagap,
and since Pathneck sends the probing packets back-toibaak;
not, in general, measure the available bandwidth of a patitead,
as described in Section 2.3, the packet train rate at théehettk
link can provide a rough upper bound for the available badtwi
In this section, we compare the upper bound on available-band
width on the bottleneck link reported by Pathneck with emabd
available bandwidth measurements obtained using IGI/PI&R [
and Pathload [21].

Since both IGI/PTR and Pathload need two-end control, we use
10 RON nodes for our experiments, as listed in the “BW” column
in Table 4; this results in 90 network paths for our experimen
On each RON path, we obtain 10 Pathneck probings, 5 IGI/PTR
measurements, and 1 Pathload measuremdiite estimation for
the upper bound in Pathneck was done as follows. If a bottlene

can be detected from the 10 probings, we use the median packet

train transmission rate on that bottleneck. Otherwise, sethe
largest gap value in each probing to calculate the packiet tate
and use the median train rate of the 10 probings as the uppadbo
Figure 7 compares the average of the available bandwidth est
mates provided by IGI, PTR, and Pathloadgxis) with the up-
per bound for the available bandwidth provided by Pathneck (
axis). The measurements are roughly clustered in threes.area
For low bandwidth paths (bottom left corner), Pathneck hes

2We force Pathload to stop after 10 fleets of probing. If Patthlo
has not converged, we use the average of the last 3 probirigs as
available bandwidth estimate.

Table 4: Probing sources from PlanetLab (PL) and RON.

ID Probing AS Location Upstream Test- B G S [¢] M
Source Number Provider(s) bed W E T \ H

1 aros 6521 uT 701 RON V4 V4 V4

2 ashburn 7911 DC 2914 PL v Vv

3 bkly-cs 25 CA 2150, 3356, PL v v | v

11423, 16631

4 columbia 14 NY 6395 PL v Vv

5 diku 1835 Denmark | 2603 PL Vv Vv

6 emulab 17055 uT 210 - Vv Vv

7 frankfurt 3356 Germany | 1239,7018 PL Vv Vv

8 grouse 71 GA 1239, 7018 PL Vv Vv

9 gs274 9 PA 5050 - Vv Vv

10 | bKly-intel 7018 CA 1239 PL v v

11 | intel 7018 CA 1239 RON v v

12 | jfki 3549 NY 1239,7018 RON | v/ | v/ v

13 | jhu 5723 MD 7018 PL v v | Vv

14 nbgisp 18473 OR 3356 PL v Vv

15 nortel 11085 Canada 14177 RON Vv Vv Vv

16 nyu 12 NY 6517,7018 RON Vv Vv Vv

17 princeton 88 NJ 7018 PL Vv Vv Vv

18 purdue 17 IN 19782 PL Vv Vv

29 | i 91 NY 6395 PL v v | v

20 uga 3479 GA 16631 PL Vv Vv

21 umass 1249 MA 2914 PL V4 Vv

22 | unm 3388 NM 1239 PL v v

23 | utah 17055 uT 210 PL v N

24 uw-cs 73 WA 101 PL v Vv

25 vineyard 10781 MA 209, 6347 RON v/ V4

26 rutgers 46 NJ 7018 PL v

27 harvard 11 MA 16631 PL Vv

28 depaul 20130 CH 6325, 16631 PL Vv v

29 toronto 239 Canada 16631 PL Vv

30 halifax 6509 Canada 11537 PL Vv

31 unb 611 Canada 855 PL Vv

32 umd 27 MD 10086 PL Vv V4

33 dartmouth 10755 NH 13674 PL v Vv

34 virginia 225 VA 1239 PL Vv

35 upenn 55 PA 16631 PL /

36 cornell 26 NY 6395 PL Vv

37 mazul 3356 MA 7018 RON V4

38 kaist 1781 Korea 9318 PL Vv

39 cam-uk 786 UK 8918 PL Vv

40 ucsc 5739 CA 2152 PL Vv

41 ku 2496 KS 11317 PL Vv

42 snu-kr 9488 Korea 4766 PL v

43 bu 111 MA 209 PL V4

44 northwestern 103 CH 6325 PL V4

45 cmu 9 PA 5050 PL V4

46 mit-pl 3 MA 1 PL V4

47 stanford 32 CA 16631 PL Vv

48 wustl 2552 MO 2914 PL Vv

49 msu 237 Mi 3561 PL Vv

50 uky 10437 KY 209 PL Vv

51 ac-uk 786 UK 3356 PL Vv

52 umich 237 MI 3561 PL V4

53 cornell 26 NY 6395 RON Vv

54 lulea 2831 Sweden 1653 RON v

55 anal 3549 CA 1239, 7018 RON Vv

56 ccicom 13649 uT 3356, 19092 RON Vv

57 ucsd 7377 CA 2152 RON Vv

58 utah 17055 uT 210 RON /

BW: measurements for bandwidth estimation;
ST: measurements for stability analysis;
MH: measurements for multihoming analysis.

GE: measureniengeneral properties;
OV: measurenfentsverlay analysis;
“~" denotesttheprobing hosts obtained privately.

Pathneck estimate of upperbound (Mbps)

.
10 20 30 40 50 60 70 80 % 100
available bandwidth (Mbps)

Figure 7: Comparison between the bandwidth from Pathneck
with the available bandwidth measurement from IGI/PTR and
Pathload.

a fairly tight upper bound for the available bandwidth on ltot-
tleneck link, as measured by IGI, PTR, and Pathload. In tipeup
left region, there are 9 low bandwidth paths for which thearpp
bound provided by Pathneck is significantly higher than trela
able bandwidth measured by IGI, PTR, and Pathload. Analysis

0.7

06l 7
05) |
04f 7

Lé .

O y
03) |
02}

01l - 4

L L L L L L
4000 5000 6000 7000 8000 9000

gap difference (us)

ol L L L
[1000 2000 3000 10000

Figure 8: Distribution of step size on the choke point.

fraction of paths detected

d_rate value

conf value

Figure 9: Sensitivity of Pathneck to the values ofconf and
d_rate.

shows that the bottleneck link is the last link, which is nistilsle
to Pathneck. Instead, Pathneck identifies an earlier litichvhas
a higher bandwidth, as the bottleneck.

The third cluster corresponds to high bandwidth paths (uppe
right corner). Since the current available bandwidth tdase a
relative measurement error around 30% [18], we show the 686 3
error margins as dotted lines in Figure 7. We consider theupp
bound for the available bandwidth provided by Pathneck teetie
if it falls within these error bounds. We find that most uppeuhds
are valid. Only 5 data points fall outside of the region defiby
the two 30% lines. Further analysis shows that the data pbiowe
the region corresponds to a path with a bottleneck on thditdst
similar to the cases mentioned above. The four data poitsvbe
the region belong to paths with the same source node (lul&a).
have not been able to determine why the Pathneck bound iswoo |

3.4 Impact of Configuration Parameters

The Pathneck algorithms described in Section 2.3 use tloree ¢
figuration parameters: the threshold used to pick candiclad&e
points (step = 10Qus), the confidence value¢nf = 0.1), and the
detection rated_rate = 0.5). We now investigate the sensitivity of
Pathneck to the value of these parameters.

To show how the 100s threshold for the step size affects the al-
gorithm, we calculated the cumulative distribution funotfor the
step sizes for the choke points detected in the “GE” set efrhmat
measurements (Table 4, to be described in Section 4.1).rd~Byu
shows that over 90% of the choke points have gap increasg lar
than 100@s, while fewer than 1% of the choke points have gap
increases around 10@. Clearly, changing the step threshold to a
larger value €.9.,500us) will not change our results significantly.

To understand the impact ébn f andd_rate, we reran the Path-
neck detection algorithm by varyingon f from 0.05 to 0.3 and
d_rate from 0.5 to 1. Figure 9 plots the percentage of paths with

at least one choke point that satisfies both ¢bef andd_rate
thresholds. The result shows that, as we increasg andd_rate,
fewer paths have identifiable choke points. This is exactiptwe
would expect. With higher values foon f andd_rate, it becomes
more difficult for a link to be consistently identified as a kdink.
The fact that the results are much less sensitiveitate thancon f
shows that most of the choke point locations are fairly stabthin
a probing set (short time duration).

The available bandwidth of the links on a path and the logatio
of both choke points and the bottleneck are dynamic pragserti
The Pathneck probing trains effectively sample these ptigse
but the results are subject to noise. Figure 9 shows thedffade
involved in using these samples to estimate the choke podat- |
tions. Using high values faton f andd_rate will result in a small
number of stable choke points, while using lower values algb
identify more transient choke points. Clearly the rightickowill
depend on how the data is used. We see that for our choice of
conf andd_rate values, 0.1 and 0.5, Pathneck can clearly identify
one or more choke points on almost 80% of the paths we probed.
The graph suggests that our selection of thresholds camelspto
a fairly liberal notion of choke point.

4. INTERNET BOTTLENECK
MEASUREMENT

It has been a common assumption in many studies that bottle-
necks often occur at edge links and peering links. In this@gove
test this popular assumption using Pathneck, which is sefiy
light-weight to conduct large scale measurements on thezriat.
Using the same set of data, we also look at the stability @frfret
bottlenecks.

4.1 Data Collection

We chose a set of geographically diverse nodes from Planet-
lab [4] and RON [31] as probing sources. Table 4 lists all theéas
that we used for collecting measurement data for the arsaigsi
this paper. Among them, “GE” is used in Sections 4.2, 4.3,%nd
“ST”is used in Section 4.4, “OV” is used in Section 6.1, andfiM
is used in Section 6.2. These nodes reside in 46 distinct aSes
are connected to 30 distinct upstream providers, provigjogd
coverage for north America and parts of Europe.

We carefully chose a large set of destinations to cover ayman
distinct inter-AS links as possible. Our algorithm selat#stina-
tion IP addresses using the local BGP routing table infoilonadf
the probe source, using a similar method as described in [24]
most cases, we do not have access to the local BGP table for the
sources, but we almost always can obtain the BGP table far the
upstream provider, for example from public BGP data sousoeh
as RouteViews [6]. The upstream provider information caiube-
tified by performing traceroute to a few randomly chosentioca
such asmww. googl e. comandwww. cnn. comfrom the probe
sources. In the case of multihomed source networks, we may no
be able to obtain the complete set of upstream providers.

Given a routing table, we first pick a “.1" or “.129” IP address
for each prefix possible. The prefixes that are completelyiea/
by their subnets are not selected. We then reduce the setaaf-1P
dresses by eliminating the ones whose AS path starting fham t
probe source are part of other AS paths. Here we make the sim-
plification that there is only a single inter-AS link betweeach
pair of adjacent ASes. As the core of the Internet is rep&ateat
versed for the over 3,000 destinations we selected for ematrs,
we would expect that each of these inter-AS links is traversany
times by our probing packets. Note that the destination tPesses

1
Uia i ||||||' o
0.9F

Fraction of paths

© o o o o

N s 2 @ o
WAL |
arwneo

°
2

o

5 20 25

10 15
Path source ID

(a) Distribution of number of choke links per source.

1 T

— bottleneck i
=+ choke link

08 09 1

03 04 06 0.7

0.5
popularity

(b) Popularity of choke links and bottleneck links.

Figure 10: Distribution and popularity of choke links.

obtained from this procedure dmt necessarily correspond to real
end hosts.

In our experiments, each source node probes each destinatio
once using Pathneck. Pathneck is configured to use a probing s
of 10 probing trains and it then uses the results of the poobét to
calculate the location of the choke points as well as a rostjimate
for the available bandwidth for the corresponding chokkdinwe
again use theonf > 0.1 andd_rate > 0.5 thresholds to select
choke points. Due to the small measurement time, we weret@able
finish probing to around 3,500 destinations within 2 days.

4.2 Popularity

As described in previous sections, Pathneck is able to tisige
tiple choke links on a network path. In our measurement$yrieak
detected up to 5 choke links per path. Figure 10(a) showsttire n
ber of paths that have 0 to 5 choke links. We found that, for all

probing sources, fewer than 2% of the paths report more than 3

choke links. We also noticed that a good portion of the pative h
no choke link. This number varies from 3% to 60% across difier
probing sources. The reason why Pathneck cannot detectka cho
link is generally that the traffic on those paths is too busstyno
link meets theconf > 0.1 andd_rate > 0.5 criteria.

in 20% or less of the Pathneck probings that traverse therouiAb
5% of the choke links are detected by all the probes. The same
observations hold for the popularity of bottleneck links.

4.3 Location

In general, a linkb is considered to be aintra-AS linkif both
ends ofb belong to the same AS; otherwidds aninter-AS link In
practice, it is surprisingly difficult to identify a link ahé bound-
ary between two ASes due to the naming convention [24] that is
currently used by some service providers. In our experigjeme
first use the method described in [24] to map an IP address to it
AS. We then classify a link into one of the following three cat-
egories: (i)Intra-AS link A link b is intra-AS if both ends ob
and its adjacent links belong to the same AS. Note that weexse v
conservative in requiring that intra-AS links fully resideside a
network. (i) Inter0-AS link.A link b is inter0-AS if the ends of
do not belong to the same AS. The libis likely to be an inter-AS
link, but it is also possible thdtis one hop away from the actual
inter-AS link. (iii) Inter1-AS link A link b is interl-AS if both
ends ofb belong to the same AS and it is adjacent to an inter0-AS
link. In this case) appears to be one hop away from the link where
AS numbers change, but it might be the actual inter-AS lingteN
that, using our definitions, the inter0-AS links and inté&3-links
should contain all the inter-AS links and some intra-AS dinkat
are one hop away from the inter-AS links.

Figure 11(a) shows the distribution of choke links and lettl
neck links across these three categories. We observe thedrfte
probing sources up to 40% of both the bottleneck links andkeho
links occur at intra-AS links. Considering our very consgive
definition of intra-AS link, this is surprising, given the dély used
assumption that bottlenecks often occur at the boundakg lre-
tween networks.

For a choke linkb in a probing setP, we compute itsiormal-
ized location(denoted byN L(b, P)) on the corresponding net-
work path as follows. Letl;, A, ..., Ax denote the AS-level path,
wherek is the length of the AS path. (i) Kis in thei-th AS along
the path, thedVL(b, P) = i/k. (ii) If bis the link between theth
and ¢ + 1)-th ASes, thenVL(b, P) = (¢ + 0.5)/k. Note that the
value of NL(b, P) is in the range of [0, 1]. The smaller the value
of NL(b, P), the closer the choke linkis to the probing source.
Given a set of probing sefg,, P, ..., P, (m > 0) that detecb as
a choke link, the normalized location of litkis computed as

ity - S NHEE)
Since the bottleneck link is the primary choke link, the défin
of normalized locatioralso applies to the bottleneck link.

Figure 11(b) shows the cumulative distribution of the ndineal
locations of both bottleneck and choke links. The curveglkd
“(unweighted)” show the distribution when all links have egual

In our measurements, we observe that some links are detectedveight, while for the curves labeled “(weighted)” we gavetekink

as choke links in a large number of paths. For a linkhat

is identified as a choke link by at least one Pathneck prohe, le
NumProbe(b) denote the total number of probes that travérse
and letNum Positive Probe(b) denote the total number of probes
that detect as a choke link. We compute tHeopularity(b) of

link b as follows:

__ NumPositive Probe(b)
N NumProbe(b)

The popularity of a bottleneck link is defined similarly. Fig
ure 10(b) shows the cumulative distribution of the poptyadf
choke links (dashed curve) and bottleneck links (solid epin our
measurements. We observe that half of the choke links aeeteet

Popularity(b)

a weight equal to the number of probing sets in which the Igk i
detected as a bottleneck or choke link. This is interestacpbse
we observed in Figure 10(b) that some links are much moréylike
to be a bottleneck or a choke link than others. The resultessho
that about 65% of the choke links appear in the first half of an
end-to-end pathig., NL(b, P) < 0.5). By comparing weighted
with unweighted curves, we also observe that high-frequehoke
links tend to be located closer to the source. Finally, by garimg
the curves for choke links and bottleneck links, we obsehas t
bottleneck locations are more evenly distributed alongeting-to-
end path. These observations are in part influenced by thetoefi

of choke link and bottleneck, and by Pathneck’s bias toweaadker
choke links.

> ®

Fraction of choke links
=

o o o o

~

Fraction of bottleneck links

CDF

Intra-AS bottlenec| _—
Inter0-AS bottlenect
Interi-AS bottlenec
Intra-Ag cf Ige
Inter0-AS chol
Inter1-AS choke

in
in
ln
i

Bof lle eckh ynwei
ou wel
wer

oke well le -—

10 15
Probing source id

(a) Distribution across classes

0.2 0.4 0.6 0.8
Location of choke links (normalized by AS path length)

(b) Cumulative distrifmutsf normalized location

1 0.2 0.4 0.6 0.8
Location of choke links (normalized by AS path length)

(c) Cumulative distribution p&ass

Figure 11: Location of bottleneck and choke links.

Figure 11(c) shows the cumulative distribution for the nakm
ized location for choke links and bottleneck links sepaydta the
different classes of links; the results have been weightethb
number of probing sets in which a link is detected as a chalte li
or bottleneck link. We observe that intra-AS choke links aiott
tleneck links typically appear earlier in the path thani@t&S and
interl-AS choke links and bottlenecks. The reason couldhbe t
some sources encounter choke links and bottlenecks inttbeie
network.

4.4 Stability

Due to the burstiness of Internet traffic and occasionalimgut
changes, the bottleneck on an end-to-end path may change ove
time. In this section, we study the stability of the bottlekse
For our measurements, we randomly selected 10 probing esurc
from PlanetLab (“ST” data set in Table 4). We sampled 30 desti
nations randomly chosen from the set of destinations obdain
Section 4.1. We took measurements for a three hour period and
we divided this period into 9 epochs of 20 minutes each. Itheac
epoch, we ran Pathneck once for each source-destinatioriPadin-
neck used probing sets consisting of 5 probing trains anorreg
choke links for each 5-train probing set.

Suppose linkb is a choke link in probing set. Let
DetectionRate;(b) denote the frequency with whidhis a can-
didate choke link in probing set For each path, we define the
stability of choke linkb over a period of: epochs as

Stability(b) = Z DetectionRate;(b)

=1
The same definition applies to bottleneck links. Note thaténge
of Stability(b) is [0.5,n] becausel_rate > 0.5.

Figure 12(a) shows the cumulative distribution for staypitiver
all measurements. We can see that bottlenecks and chokénkrie
very similar stability, but this stability is however notryehigh. We
speculate that the reason is that many bottlenecks arevdetst by
the traffic load, not link capacity. Figure 12(b) shows thebdity
(at the router level) for intra-AS, inter0-AS and interl-ABoke
links. We see that intra-AS choke links are significantlysletable
than inter-AS choke links. Comparing the two types of irA&-
choke links, inter0-AS choke links are more stable thanrin#eS
choke links. We observe similar results at the AS level asveho
by the curves labeled “intra-AS-level” and “inter1-AS-&% the
intra-AS choke links are again less stable than the inte8lchoke
links. Moreover, we see, not surprisingly, that AS-levedkf links
are more stable than router-level choke links. Similar okz@®ns
apply to bottlenecks (not shown in Figure 12(b)). Given tmak
number of destinationd.€., 30) and short duration of the exper-
iment (.e., 3 hours), we cannot claim that these stability results

EReRsk —

1 3 4 5 6 7 8
Stability of a choke link

(a) Bottlenecks vs. choke links

link —
i
n
n
n

S choke

Intra- Ag] eveP] chocl g
-A cho|
-AS choke

Interl A level choke

3 4 5 6
Stability of a choke link

(b) Intra-AS vs. inter-AS choke links

Figure 12: The stability of choke links.

are representative for the Internet. We plan to do more skten
experiments in the future.

INFERRING BOTTLENECKS

In this section, we look at the problem of inferring the bertick
location for a path that was not directly probed by Pathnédie
observation is that, if all or most of the links on a path asoadart
of paths that have already been probed, we may be able tedkev
bottleneck location without actually probing the path. sThould
significantly reduce the amount of probing that must be donenwv
studying bottleneck locations.

Methodology: We divide the “GE” data set we gathered in Sec-
tion 4 into two parts — a training set and a testing set. ffai@ing
setis used to label each link with an upper bound3,, (L) and/or
a lower boundB, (L) for the available bandwidth; these bounds
are calculated using the algorithm presented in Se@i@h3 If
there are multiple bounds on the available bandwidth oftaftiom
multiple probing sets, we take the lowest upper bound as phe u
per bound of the link’s available bandwidth and the highestelr
bound as the lower bound of the link’s available bandwidtimc&

5.

Table 5: Inference results

Class Links Correct | Incorrect | No upper Not Total
covered bound covered

0 100% 10.2% 8.5% 9.9% 0% 28.6%
1 [80%, 100%) | 11.4% 9.3% 9.8% 7.2% | 37.7%
2 [70%, 80%) 2.7% 2.5% 2.4% 3.6% | 11.2%
3 [60%, 70%) 1.4% 1.3% 1.3% 2.6% 6.6%
4 [0%, 60%) 0.9% 0.8% 0.6% 2.2% 4.5%
- — — — - - 11.4%

Total — 26.6% 22.4% 24% 15.6% 100%

this type of calculation on bounds is very sensitive to messent
noise, we first preprocess the data: we include upper boumlgs o
if the standard deviation across the probing set is less208& of
the average upper bound.

The testing seis used for inference validation as follows. For
each pathP in the testing set, we try to annotate each linke P.

If the link is covered in the training set, we associate thpeup
bound B, (L;) and/or lower bound3;(L;) derived from the train-
ing set with it. We identify the link.; with the lowest upper bound
B.(L;) as the inferred bottleneck link;; we ignore links that
have no bounds or only lower bounds. We then comgareith
the “true” bottleneck location, as identified by the Pathnexsult
in the testing set. If the location matches, we claim thatktbe
tleneck location inference for the pafh is successful. Paths in
the testing set for which Pathneck cannot identify any cHoke
with high enoughd_rate andcon f are excluded from the analy-
sis. Note that routers may have multiple interfaces witfedgnt
IP addresses, we use the tédly [35] to resolve router aliases.

When evaluating how successful we are in inferring botti&ne
location, we need to account for the fact that for most patfes,
miss information for at least some of the links. Obviouslywgaild
expect to have a lower success rate for such paths. For taeme
we classify the paths in the testing set into 5 classes base¢deo
percentage of links that are covered by the training €dtass 0
includes paths in the testing set for which we have somerimder
tion (either upper bound, lower bound, or both) for everk lin
the path.Class lincludes paths for which we have information for
over 80% of the links, but not for every link. Similariglasse<,

3, and 4 include paths for which the percentage of coveréd im
[70%, 80%), [60%, 70%), and [0%, 60%), respectively.

Results: The probing data that we used in this section includes the
results for 51,193 paths. We randomly select 60% of the pgpbi
sets as the training data, while the remaining 40% are ustgbas
ing data for inference evaluation. That gives us 20,699iatthe
testing set. Column “Total” in Table 5 lists the percentafjpaihs

in each class; the “11.4%" entry corresponds to paths ingsiing

set on which we cannot identify a bottleneck.

Column “Correct” corresponds to the cases where inference
was successful, while column “Incorrect” corresponds todhses
where we picked the wrong link as the bottleneck, even though
the training set provided sufficient information about thelrbot-
tleneck link. Column “No upper bound” corresponds to thenpat
where we picked the wrong bottleneck link, but the trainieg s
only has lower bounds for the true bottleneck link; this sically
because the link was covered by very few probings in theitrgin
set. The column “Not covered” corresponds to paths for witieh
bottleneck link is not covered in the training set, so we cawvi-o
ously not identify the link as the bottleneck link. For bolie t'‘No
upper bound” and “Not covered” cases, inference fails beede
training set does not offer sufficient information. A moreefally
designed training set should reduce the percentage of pethsse
categories.

Overall, inference is successful for 30% of the paths whieh w

can identify bottleneck in the testing set, while the suscese
increases to 54% when we have sufficient data in the trairéhg s
Note the diminishing trend in the inference success ratecdsave
information for fewer links in the path: the “Correct” casesount
for 36%, 30%, 24%, 21% and 20% of the path€iassed through

4, respectively. This drop is expected since the less irdtion we
have on a path, the less likely it is that we can infer the bo#tk
location correctly.

Discussion: The inference capability presented in this section
shows that it is possible to infer the network bottleneckatam
without probing the path with some level of accuracy. Howgve
we need sufficient information on the links in the path so itis
portant to properly design the training set to reduce thebmimof
links for which we have little or no data. Ideally, we would &lale

to systematically probe a specific region of the Internetutdthe
results in a database. This information could then be useabby
plications to infer the bottlenecks for any path in that oegdf the
network.

6. AVOIDING BOTTLENECKS

In this section we study how bottleneck information obtdibg
Pathneck can be used to improve overlay routing and multifigm

6.1 Overlay Routing

Overlay routing, or application layer routing, refers te tlea of
going through one or more intermediate nodes before reg¢hin
destination. The intermediate nodes act as applicaticar layters
or overlay nodes by forwarding traffic typically without aag-
ditional processing. Previous studies [33, 31] have shdwh by
going through an intermediate node, the round trip delaybessig-
nificantly improved and routing failures can be bypassedsuich
cases, the part of the network experiencing congestion udimig
problems is avoided. Note that between any two overlay nodes
between an overlay node and either the source or destinatigu-
lar IP routing is used to route traffic. One of the reasons wiohs
“triangular” routing works is that BGP — the Inter-domain iRo
ing Protocol, does not optimize for network performanceeimis
of delay, loss rate, or bandwidth. Shortest AS-path-basating
does not always vyield the best performing paths becauseagout
policies can cause path inflation [37, 34].

Overlay routing can thus be used to avoid bottleneck links in
the underlying IP path, thereby improving application lewer-
formance in terms of throughput. So far, no studies have -quan
tified the benefit overlay routing provides in avoiding berick
links. To the best of our knowledge, this study presents trg v
first large scale analysis of how overlay routing can imprthe
available bandwidth of a path. Other metrics such as deteg |
rate, and cost [15] are also important, and we plan to study th
correlation between these metrics and the available batidwie
consider here in a future study. Most of the nodes from whieh w
performed probing are well connected., they receive upstream
Internet service from a tier-1 ISP. We would like to undemstéhe
utility of overlay routing when the probe nodes serve as layer
routers for paths destined to arbitrary locations in therimet. We
used the following probing methodology to gather the dataHis
study.

Methodology: We selected 27 RON and Planetlab nodes as both
the source nodes and overlay nodes, as listed in the “OVhoolin
Table 4. Using a BGP table from a large tier-1 ISP, we sampiéd
random IP addresses from a diverse set of prefixes; each rBssdd
originates from a different AS and ends with “.1” to minimite
chance of triggering alarms at firewalls. From each probmgee

we performed the probing process described below duringetree

bottleneck link bandwidth improvement

+ Upper bound
O Lower bound

0.8

0.7

%05
go.

0.4]

0.2

0.1

50 100 150
bandwidth in Mbps

Figure 13: Improvements in the lower and upper bounds for
available bandwidth using overlay routing (cutoff at 150Mbps).

time period to minimize the effect of transient congestiorany
other causes for nonstationary bottleneck links. Givenligteof
200 target IP addresses, each source isbpbes each IP address
10 times using Pathneck. After probing each target IP addfes
randomly selects 8 nodes from the set of 22 source nodes as it
candidate overlay nodes and probes each of these 8 nodesek0 ti
This probing methodology is designed to study the effentes
of overlay routing in avoiding bottleneck links in a fair nrear, as
the probing of the following three paths occur very closeirimet

S —D,S — S, andS" — D, whereS’ is overlay node and is
destination node. The upper bound for the bottleneck lilable
bandwidth is calculated based on the largest gap value ipatie
across the 10 probing results.

For each destination from a given source, we calculate therlo
bound and upper bound for the available bandwidth of the path
the lowest and highest upper bound on bottleneck link aviaila
bandwidth calculated by Pathneck in the 10 probings forphast.
When composing two paths such 8s— S’ with S — D, the
lower bound of this overlay path is assumed to be the minimfim o
the two lower bound values from the individual paths. Theearpp
bound of an overlay path is calculated in the same mannen® ha
a conservative estimate of the available bandwidth. We ooty
sider the effectiveness of overlay routing by going throaglingle
intermediate node, similar to previous studies.

Results: Of the 63, 440 overlay attemptsi.e., routing to a desti-
nation by going through an intermediate nod2,72% areuseful
which means that overlay routing improves either the lowahe
upper bound on the available bandwidth of the path. Notewleat
are not considering other metrics such as latency or paokst |

If we require both bounds to increase, the useful rat&5i92%;

the breakdown for improving only the lower bound or only tipe u
per bound is17.39% and19.40%, respectively. The distribution
of the improvement in upper and lower bounds for the avaslabl
bandwidth is shown in Figure 13. The curves show that most im-

S

lay routing cannot help. Among the other sites, where most®f
randomly selected overlay nodes can help in improving akéel
bandwidth, we studied the data in more detail to see whether a
particular overlay nodes are always helpful for a given semode.
Surprisingly, the answer iges In fact, for most source nodes, there
are 2 to 3 overlay nodes that can improve performance for more
than90% of the cases examined. For example, when using vine-
yard as a source, jfk1, bkly-cs, and purdue all prove to béulise
as overlay nodes fa92% of the destinations. Such information
is very helpful in making overlay routing decisions, as wecdiss
below.

Discussion: The study presented here has several important impli-
cations for how to select overlay nodes and for improvinglaye
routing strategies. Overlay node selection typically Imes con-
tinuous probing and monitoring between the source node lad t
overlay node, and between the overlay node and the destinati
node. This solution is not scalable if one has to probe exvals

for every combination of destinations and candidate oyertales.

To minimize measurement overhead, one can make use of the top
logy information to predict how likely an intermediate olagrnode

can help improve performance to a particular destinatiathrieck
presents two opportunities here: (1) Pathneck is very belpf
identifying both the location of stable bottleneck linksdaverlay
nodes that often seem helpful in avoiding such links. (2hFetk

is light-weight enough to be used on-demand to decide which u
stream provider to use for routing bandwidth-intensiveligpfions

or applications requiring a minimal amount of bandwidthuad-
tion, e.g.,multimedia streaming.

6.2 Multihoming

Large enterprise networks oftemultihome to different
providers. The multihomed network usually has its own Au-
tonomous System (AS) number and exchanges routing informa-
tion with its upstream providers via the Border Gateway &vok
(BGP). The original motivation for multihoming was to acree
resilient network connectivity or redundancy in case thenectiv-
ity to one ISP fails or one of the ISPs experiences severeéngut
outages. Multihoming can not only increase the availabdftnet-
work connectivity, but can also improve performance byveithgy
multihomed customers to route traffic through differenttrgesm
providers based on the routing performance to a given Gegiim
A recent study [8] has shown that, by carefully choosing tgbtr
set of upstream providers, high-volume content providarsgain
significant performance benefit from multihoming.

The performance benefit offered by multihoming dependslyigh
on the routing path diversity and the location of failuresper-
formance bottlenecks. For example, if a network is multiedm
to two providers that route large portions of its traffic viaths
with significant overlap, then the benefit of multihoming Iviie
sharply diminished since it will not be able to avoid botdeks in

provements in the upper bound are less than 100Mbps while thethe shared paths. As a result, we consider the following webp

limit for the lower bound is 20Mbps.

We now examine more closely how useful the overlay nodes
are in improving the available bandwidth bounds from eachic®
node to the200 randomly selected destinations. We found that for
most sources almost all 22 overlay nodes can be used foringach
somedestinations with improved performance. A few exceptions
stand out: the mazul site finds only 8 out of 22 nodes useful in
terms of improving available bandwidth, and the cornek §iihds

lems: (1) Given the set of popular destinations a networdgfeatly
accesses, which upstream provider should the networkaemss-
ing? (2) Given a set of upstream providers, which provideush

be used to reach a given destination? Clearly we would lilgoto
the selection without expensive probing. We show that Ratkin
can help answer both these questions. To the best of our knowl
edge, this is the first study to examine the benefit of multiimgm

to avoid bottleneck links by quantifying the improvementivail-

18 nodes useful. One possible reason is that the paths betwee able bandwidth.

these two sites and the chosen destinations already hadepgoo
formance, hence overlay routing does not help. Anotheripless
explanation is that the bottleneck is near the source, sio agar-

Methodology: To understand the effect of multihoming on avoid-
ing bottleneck links, one would ideally probe from the same
source to each of several destinations through differeatregm

Table 6: Grouping based on coarse-grained geographic prox-
imity.

[Group name] Group member | Useful rate|
sf bkly-cs, ucsc, stanford 94%
nyc princeton, jhu, bu, 99%
umd, rpi, mit-pl, dartmouth, cmu
kansas ku, wustl 90%
chicago depaul, umich, uky, northwest, msli, 98%
britain cam-uk, ac-uk 17%
korea kaist-kr, snu-kr 74%

providers. A previous study [8] simulated this by probingnfr
nodes within the same city but connected through differgnt u
stream providers. Unfortunately, very few of our probe rsodee
located in the same city and have different upstream providile
simulate this by choosing 22 probing sources belonging fterdli
ent, but geographically close, organizations, as is shawiable 6.

—+— nyc

—&— chicago
kansas

—— sf

k- korea

—+— britain

1 2 3 4 5 6 7 8
Number of providers

Figure 14: Improvement in avoiding bottleneck links with in-
crease in providers.

couraging. Not only do they suggest that multihoming cardyie
significant benefits, but they also show that informatioriexéd

We treat the members in the same group as nodes within the sameyy Pathneck can be used to select the upstream providers.

city. While this is a simplification, we note that the geodnais-
tance between any two nodes within the same group is smal rel
tive to the diverse set af, 090 destinations we selected for probing.
To evaluate the effectiveness of multihoming, for each geo-
graphic group, we examine the bounds on the available baltldwi

7. RELATED WORK

Bandwidth estimation techniques [14, 22], specificallyilatde
bandwidth estimation algorithms [13, 20, 26, 18, 30, 36]aswee

of the paths from each member in the group to the same destina-network throughput, which is closely related to congestidow-

tion. If the improvement in the lower bound or the upper bound
from the worst path compared with any other path in the greup i
more than 50% of original value, then we declare multihoming
beuseful Note that similar to the overlay routing study, our metric
only considers available bandwidth; for some applicatiatber
path properties such as latency and cost could be more iergort
Results: Among all 42, 285 comparisons we are able to make
across all probing locations, more th@&% of them are useful
cases. This is very encouraging and shows that multihonngmifs
icantly helps in avoiding bottleneck links. However, thessults
may be overly optimistic given our destination set and tHé-di
culty in discovering bottlenecks at the destination sitestFmany

of the probe destinations selected are not stub networksrenst

of them do not correspond to addressable end hosts. Fudherm
firewalls often drop outgoing ICMP packets, thus renderiathP
neck ineffective at identifying bottleneck at some dediorasites.
Nevertheless, our results suggest that multihoming is effegtive

at avoiding bottleneck links near the source or inside thevo

ever, they provide no location information for the congastpoint.
Also, all these tools, except cprobe [13], need the coojueraif
the destination, which makes them very hard to deploy. Rdoke
rate is another important metric that is related to userutdnput,
especially for TCP traffic [27]. Tools that focus on loss rate
clude Sting [32], which measures the network path loss &atd,
Tulip [23], which can pinpoint the packet loss position.

The tools that are most closely related to Pathneck incluate C
touche [17], Packet Tailgating [29], BFind [10] and Pathdi®].
Cartouche [17] uses a packet train that combines packetsf-of d
ferent sizes and exploits differences in how differenedipackets
are handled to measure the bandwidth for any segment of the ne
work path. The bottleneck location can naturally be deddozd
its measurement results. Packet Tailgating [29] also coesbioad
packets and measurement packets, but instead of lettingumea
ment packets expire, it expires the load packets. Both Gelne
and Packet Tailgating require two end control.

BFind [10] detects the bottleneck position by injecting easly

core. When we are more conservative and we require both the up UDP flow into the network path, and by gradually increasirgy it

per bound and the lower bound to improve by 50%, then the Lisefu
rate is reduced to exactly 50%.

Examining the results for individual groups in Table 6 rdsea
some interesting characteristics. First of all, the bigbergroup,
the higher the useful rate. For the two sites outside NortleAca
— britain and korea, the useful rates are significantly lowale
conjecture that the transoceanic link is the main bottlketiak and
it cannot easily be avoided by choosing a nearby source nibew
the same country. Also, these two groups have only two mesnber
so they have fewer choices.

Intuitively one would expect that as one adds more service
providers, there is a diminishing return for multihominga @arlier
study [8] has shown this with respect to reducing downloatkti
for Web objects. We now examine this effect using availalaieds
width as the performance metric. Figure 14 shows how theutisef
rate increases with the number of providers. We see tha iker
a fairly steady increase, even for higher numbers of progidé/e
plan to investigate this further using more probe sourcatlons.
Discussion: The results of the multihoming study are quite en-

throughput to amplify the congestion at the bottleneck enuft

the same time, it uses Traceroute to monitor the RTT char@es t
all the routers on the path, thus detecting the position efmiost
congested link. Concerns due the overhead generated byDRe U
flow force BFind to only look for a bottleneck with availablard-
width of less than 50Mbps. Even then, considering its measur
ment time, its overhead is fairly high, which is undesiratdea
general-purpose probing tool.

Pathchar [19] estimates the capacity of each link on a n&twor
path. The main idea is to measure the data transmission time o
each link. This is done by taking the difference between theR
from the source to two adjacent routers. To filter out measarg
noise due to factors such as queueing delay, pathchar reesesd
a large number of probing packets, identifying the smalET
values for the final calculation. As a result, pathchar alas &
large probing overhead.

Due to the lack of a measurement tool to identify bottleneek |
cation, there has not been much work on analyzing Interngebo
necks. We are only aware of the analysis in [10], which shdas t

most bottlenecks are on edge and peering links. Pathneak ove [9] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikhri@ye

comes some of the limitations in BFind, thus allowing us to-pe g)lgig% R/ASMmAlJlljtighufJSTiz%%4An end-to-end perspective Piroc. ACM
form a more extensive bottleneck study. The large BGP da&ab{i [10] A. Akella, S. Seshan, and A. Shaikh. An empirical evémof
that we have access to also enables us to probe the Interaet in wide-area internet bottlenecks. fioc. ACM IMC, October 2003.
more systemat!c way, thus giving our analysis a.broadere;cqp [11] K. G. Anagnostakis, M. B. Greenwald, and R. S. Rygergcin

Several studies have shown that overlay routing [31, 33]timu Measuring network-internal delays using only existingastructure.
path routing [12, 25, 28], and multihoming [8, 5] benefit ersgu 12 :5”20;- |§EE |N'ZOEOSRAADFI| 2003& . Balakrishnan. Bah

H i H H i . G. Andersen, A. C. snoeren, an . balakrishnan. VS.

fomrréutr;]lcatlor? b)t/ re_;i#cmg the. paicket.lossllra’;e and Inml.gﬁd multi-path overlay routing. IfProc. ACM IMG October 2003.
0-en roughput. €se projects P”ma“ y tocus on liakure [13] R. L. Carter and M. E. Crovella. Measuring bottleneciIspeed in
or packet loss, although some consider latency and thraugiem packet-switched networks. Technical report, Boston Usite
well. A recent study compares the effectiveness of overbayimg Computer Science Department, March 1996.
and multihoming, considering latency, loss rate, and thinput as [14] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet

dispersion techniques measurePhoc. of ACM INFOCOM April
2001.

D. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang.

metrics [9]. In contrast, our work approaches the probleomfr
a different angle— by identifying the location of the botibek [15]

we can study how overlay routing and multihoming can be used t Optimizing Cost and Performance for Multihoming.Rnoc. ACM
avoid bottlenecks. Our work shows the benefit of overlayingut SIGCOMM August 2004. o _
and multihoming and suggests efficient route selectionrilgos. [16] R. Govindan and V. Paxson. Estimating router ICMP gatien

delays. InProc. PAM March 2002.
[17] K. Harfoush, A. Bestavros, and J. Byers. Measuringléogick

8. CONCLUSION AND FUTURE WORK zg?ﬁ;vgjotg of targeted path segmentsPhoc. IEEE INFOCOM

In this paper, we present a novel light-weight, single-ectiva [18] N.Hu and P. Steenkiste. Evaluation and charactecizatf available
probing tool —Pathneck- based on a probing technique called Re- bandwidth probing techniquel=EE JSAC Special Issue in Internet
cursive Packet Train (RPT). Pathneck allows end users tiesftly ggg ?:NWW Measurement, Mapping, and Model2y6), August
and accurately locate bottleneck links on the Internet. Néaghat [19] V. Jacobson. pathehar - a tool to infer characterissiaternet
Pathneck can identify a clearly-defined bottleneck on air806%6 paths, 1997. Presented as April 97 MSRI talk.
of the Internet paths we measured. Based on an extensivé set 0[20] M. Jain and C. Dovrolis. End-to-end available bandidt
Internet measurements we also found that up to 40% of the bot- Measurement methodology, dynamics, and relation with TCP
tlenecks are inside ASes, contrary to common assumptions. W throughput. IrProc. ACM SIGCOMMAugust 2002.

showed how Pathneck can help infer bottleneck location catlap (211 M- Jain and C. Dovrolis. Pathload: A measurement tool fo

. . . . end-to-end available bandwidth. Rroc. PAM March 2002.
without probing. Finally, we illustrated how Pathneck canused [22] M

K. Lai and M. Baker. Nettimer: A tool for measuring bettleck link

to guide overlay routing and multihoming. bandwidth. InProc. of the USENIX Symposium on Internet

This paper analyzes only some aspects of Internet bot#tenec Technologies and Systenharch 2001.
and many issues require further study, including the stgtof (23] iFr*]-te'\:'r?Qtagf;ft‘H ﬁiasgmf;% ?ﬁ-r\(/)\ffgg g'é; 8&% JéﬁggggsoneUevel
bottlenecks, the '”?pa,Ct O.f topology and routing cha.nges @n b [24] Z. M. Mao, J. Rexford, J. Wang, and R. Katz. Towards anukate
tlenecks, and the distribution of bottlenecks across wtiffe(levels AS-level Traceroute Tool. IRroc. ACM SIGCOMMSeptember
of) ASes. We also hope to improve Pathneck, for example laystu 2003.
ing how configuration parameters such as the load packetthze [25] N. MaxemchukDispersity Routing in Store and Forward Networks
number of load packets, and the initial probing rate of RF&caf PhD thesis, University of Pennsylvania, May 1975.

[26] B. Melander, M. Bjorkman, and P. Gunningberg. A new é¢meénd
probing and analysis method for estimating bandwidth &oétks.
In Proc. IEEE GLOBECOMNovember 2000.
[27] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. ModglirCP
Acknowledgments throughput: A simple model and its empirical validation Aroc.

We thank Dave Andersen for his help in setting up the experime ACM SIGCOMM September 1998. , _
on RON, Jay Lepreau and the Emulab team for their quick re- [28] M. O. Rabin. Efficient dispersal of information for seity, load

’ . . . balancing, and fault tolerancé. of the ACM 36(2), April 1989.
sponses during our testbed experiments, and Ming Zhangisor h >9] v, Ribeiro. Spatio-temporal available bandwidth esttion for

help in using the PlanetLab socket interface. We thank stippo high-speed networks. IRroc. of the First Bandwidth Estimation
from the Planetlab staff. We also thank our shepherd Clsristo Workshop (BEst)December 2003.

Papadopoulos and the anonymous reviewers for their catisgu [30] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. @ell.
pathchirp: Efficient available bandwidth estimation fotvmark

comments. , , paths. InProc. PAM April 2003.

Ningning Hu and Peter Steenkiste were in part supportedéy th (317 RoN. Resilient Overlay Networks. http:/nms.Ics.itu/ron/.

NSF under award number CCR-0205266. [32] S.Savage. Sting: a TCP-based network measurementrddioc.
of the 1999 USENIX Symposium on Internet Technologies and
SystemsOctober 1999.

9. REFERENCES [33] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Caitlw

A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and

J. Zahorjan. Detour: a case for informed internet routing an

the measurement accuracy.

[1] Abilene network monitoring. http://www.abilene.igl&/noc.html.

[2] Dummynet. http://info.iet.unipi.ittluigi/ip_.dummynet/. transport/EEE Micro, 19(1), 1999.
[3] Emulab. http://www.emulab.net. [34] N. Spring, R. Mahajan, and T. Anderson. Quantifying @eises of
[4] Planetlab. https://www.planet-lab.org. Path Inflation. InProc. ACM SIGCOMMAugust 2003.
[5] Routescience. http://www.routescience.com. [35] N. Spring, R. Mahajan, and D. Wetherall. Measuring 18fotogies
[6] University of Oregon Route Views Project. with Rocketfuel. InProc. ACM SIGCOMMAugust 2002.
http://www.routeviews.org. [36] J. Strauss, D. Katabi, and F. Kaashoek. A measuremeay sif
[7] RFC 792. Internet control message protocol, Septem®@t .1 available bandwidth estimation tools. roc. ACM IMG October
[8] A.Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitarana 2003.
Measurement-Based Analysis of Multihoming.Rroc. ACM [37] H. Tangmunarunkit, R. Govindan, and S. Shenker. IrteRath

SIGCOMM September 2003. Inflation Due to Policy Routing. IProc. SPIE ITCOMAugust 2001.

