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ABSTRACT

We consider a tactical data network with limited bandwidth,
in which each agent is tracking objects and may have value
for receiving data from other agents. The agents are self-
interested and would prefer to receive data than share data.
Each agent has private information about the quality of its
data and can misreport this quality and degrade or other-
wise decline to share its data. The problem is one of inter-
dependent value mechanism design because the value to one
agent for the broadcast of data on an object depends on the
quality of the data, which is privately known to the sender.
A recent two-stage mechanism due to Mezzetti (2004) can
be modified to our setting. Our mechanism achieves effi-
cient bandwidth allocation and provides incentive compat-
ibility by conditioning payments on the realized value for
data shared between agents.

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Economics;
C.2.0 [Computer-Communication Networks]: General

General Terms

Design, Economics, Theory

1. INTRODUCTION
Almost all military group operations rely on the platforms

(air, sea, and ground) involved in a mission to act as a cohe-
sive force. Thus, the platforms must establish and maintain
a common understanding of the tactical situation. Tactical
data is often exchanged between the platforms using a stan-
dardized radio network, commonly called a tactical data in-
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formation link (TADIL) [5]. However, the bandwidth in these
tactical data networks is a very scarce resource and the mis-
sion outcome can be significantly affected by decisions made
in real-time about what data to share. Thus, ad hoc band-
width allocation can seriously jeopardize the mission, e.g.,
when position updates on the enemy are delayed.1

Major kinds of tactical data exchanged between platforms
include their own positions and movements and the trajec-
tory (or “track”) data for objects of interest. Track data
is processed radar data which typically represents real ob-
jects such as airplanes, helicopters, ships, and land vehicles.
The quality of the common operational picture critically de-
pends on the effective sharing of this data. In standard
practice, each track is assigned to the single platform with
the best quality data for that track (the so-called “report-
ing responsibility” (R2) rules). Over a single network cycle,
each responsible platform sends data on its assigned tracks.

These rules are designed to minimize latency by making
the network cycle time (the time between two consecutive
data exchanges on the same object) as short as possible,
since data on each track is broadcast only once. However,
this is an extreme minimalist approach because there is no
attempt to improve quality by sharing additional data on
the same track. We take as our starting point the premise
that additional communication per network cycle can sig-
nificantly improve the quality of the combined data, and
by enough to warrant the additional latency that comes
from a longer cycle time. We assume that some underlying
latency constraint determines the maximum network cycle
time which translates into a maximum amount of bandwidth
available for data exchange. Our goal is to allocate all avail-
able bandwidth per network cycle such that the value to all
platforms from the shared data is maximized.

In our domain, the problem of bandwidth allocation is par-
ticularly complex because we also allow for the self-interest

1A Research Service report for the U.S. Congress notes that
“When the supply of bandwidth becomes inadequate during
combat, military operations officers have sometimes been
forced to subjectively prioritize the transmission of mes-
sages. They do this by literally pulling the plug temporarily
on some radio or computer switching equipment in order to
free up enough bandwidth [...].”[15]
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of individual platforms Even in military settings some self-
interest is a concern because individual platforms have local
goals and benefit from receiving data but have no value for
sending data. Thus, we can expect a tendency for platforms
to under-represent the quality of their data so that the band-
width is allocated to the transmission of data by others.

Deceptive behavior is a particular concern when coalition
forces are involved in a mission. For example, even within
the Navy, there are many sub-groups such as fleets (Atlantic,
Pacific and Asiatic) or commands (Surface Force, Submarine
Force, Naval Air Force). Undoubtedly, given the size and
scope of the Navy, it is not possible for every sub-group to
serve exactly the same agenda. Thus we must account for
the possibility of deceptive behavior, even under one flag.

1.1 A Simple Example
To understand the need for incentive design in this domain

it is helpful to consider the following example. We assume
that the quality of data is private information but that there
is a commonly known value function that maps this quality
into value, measured in units of an appropriate currency.

Example 1. Consider a scenario with two ships A and B
and one object of interest. Ship A knows that its information
about the object is of a quality that makes it worth value 5
to any other ship and ship B knows its data is of a quality
that makes it worth value 2 to any other ship. Suppose that
only one piece of data can be broadcast per cycle. When
truthful, ship A will be asked to broadcast its data because
that maximizes the total value improvement. However, A
would prefer to under-report its quality (e.g. to 1) so that B
will be asked to broadcast its data instead.

Because of this apparent conflict of interests, we consider
the design of mechanisms where participants are rewarded
for their particular role in sharing the data through pay-
ments, such that all participants’ incentives are aligned.
From the perspective of mechanism design, the problem con-
sidered here is challenging because of the presence of inter-
dependent values. The value of one participant for an allo-
cation of bandwidth depends on private information held by
other participants, namely on the quality of their observed
data. Moreover, our framework is one of“multi-dimensional”
private information because each participant can potentially
have information on multiple objects. The following exam-
ple illustrates how a standard Groves mechanism [6] gener-
ally fails in domains with interdependent values:

Example 2. Let’s again consider the scenario from Ex-
ample 1 with ships A and B and one object of interest. With
a Groves mechanism, if ships truthfully report the quality of
their data, A will be asked to broadcast data to B and A

will be paid 5, i.e., the value to B based on the reports about
quality. Notice, however, that A can drive this payment ar-
bitrarily high by over-claiming the quality of its data.

1.2 Related Work
Designing useful mechanisms in the presence of value in-

terdependence is a familiar challenge in mechanism design
theory. Dasgupta and Maskin [2] consider the design of
efficient, interdependent value mechanisms for the single-
dimensional setting. Ito and Parkes [7] extend their meth-
ods to a single-minded combinatorial auction environment.
Constantin et al. [1] have studied the problem of dynamic
mechanisms in a setting with interdependent values. See

Krishna [10] for an accessible introduction to the problem
of interdependent valuations.

Dash et al. [3, 13] have previously studied the problem
of interdependent valuations in the context of data fusion
in sensor networks but with the restriction that each par-
ticipant tracks at most a single object. We dispense with
this restriction in our work. Moreover, for a mechanism to
implement the efficient outcome in an interdependent value
setting, it is generally necessary that the agents’ value func-
tions satisfy the single crossing condition [2, 10]. It is unclear
to us that this condition will hold in their setting.2 These au-
thors also assume that the mechanism has the power to en-
force an outcome to ensure that participants actually follow
through with the required communication actions. In our
mechanism, the incentives are aligned so that participants
will choose to obey the proposed outcome. In this sense
we achieve the faithfulness property of distributed mecha-
nism design [14, 4]. The main additional assumption that
we make over those in Dash et al. [3] is that the mechanism
center can observe the quality of the data transmitted.

While it is possible to design efficient mechanisms for
interdependent value settings with one-dimensional signals
when the single crossing condition is satisfied, there exist
strong impossibility results by Jehiel and Moldovanu [8] for
the multi-dimensional case that would also apply to our do-
main.3 However, this only applies when one is constrained
to a “standard mechanism design paradigm” of determining
payments simultaneously with determining the outcome. In
our work, we modify a mechanism due to Mezzetti [11] which
circumvents this impossibility result and also no longer re-
quires the single crossing condition to be satisfied.

The result is an efficient (i.e., value-maximizing), incen-
tive compatible mechanism for allocating bandwidth. Our
mechanism provides a general solution to a practically moti-
vated model of data fusion in sensor networks, where we can
dispense with some of the restrictive assumptions that limit
earlier work. The key innovation in Mezzetti [11] is to define
payments based on the actual value from the realized out-
come rather than on agents’ reports of private information.
This allows Mezzetti to achieve efficiency despite interde-
pendent valuations. Our mechanism provides more robust
properties than that of Mezzetti, as we discuss below.

2The single-crossing condition(SCC) can be understood as
follows. Consider the value to a ship for an allocation as its
increase in value over-and-above its value for the null alloca-
tion in which no data is shared. Given this, for a particular
allocation of bandwidth the SCC requires that the marginal
increase in value to ship A for a marginal increase in the
quality of its own data should be greater than the marginal
increase in value to some other ship B. But this condition
fails: ship A has zero marginal value for an increase in the
quality of its own data for this allocation because it has al-
ready internalized the value from its own data and only has
value for receiving new data from other ships.
3With just one object in the environment, each agent prefers
that another agent has high quality data about the object
than low quality data. No such total ordering exists with
multi-dimensional signals: it is unclear whether high qual-
ity data on object A but low quality data on B is preferred
to low quality data on object A but high quality data on B.
The participants in our problem have multi-dimensional pri-
vate signals because they each track multiple objects. How-
ever, it is not possible to decompose the problem across ob-
jects because the resource constraint links the allocation de-
cision on all objects.
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Complementing our theoretical results, we have also devel-
oped an application framework that exhibits sufficient scale
and dynamic complexity to study the feasibility of compu-
tational mechanism design in this setting. The framework
emulates a tactical data network (based loosely on the Navy
LINK-11) and includes much of what is required to construct
a common operational picture from radar sensor data.4

2. PRELIMINARIES
We consider participants i ∈ N = {1, . . . , n} (henceforth

called agents) and objects of interest j ∈ G = {1, . . . ,m}.
The full type ψi = (si, qi, di) ∈ Ψi represents all private in-
formation of an agent, where si = (si1, . . . , sim) ∈ {0, 1}m,
with sij = 1 when object j is in the region of observa-
tion of agent i, qi = (qi1, . . . , qim) ∈ Rm

≥0, where qij is
the quality of i’s observed data about object j ∈ G, and
di = (di1, . . . , dim) ∈ Dm, where dij is the data agent i ac-
tually observed on object j and D is the set of possible data
items that can be observed for one object. We define the
reduced type (or simply type) θi = (si, qi) ∈ Θi to capture
agent i’s private information si and qi that is of small size
and can be reported efficiently in contrast to the data di.
We let θij = (sij , qij) and require sij = 0 ⇒ qij = 0. We
let Θ = ×i∈NΘi denote agents’ joint type space, and θ ∈ Θ
denotes a particular joint type.

Agents have intrinsic value for receiving data on objects in
their region of observation. We allow this value to depend on
the quality of the received data and the quality of the data
they already have. Consider agent i with type θi = (si, qi),
and some other agent k 6= i holding data on object j ∈ G

with quality qkj . We let w(qkj , θij) denote the value to agent
i for receiving a single data item of quality qkj on object j.
We assume that sij = 0 ⇒ w(·, θij) = 0.

The assumption that sij = 0 ⇒ w(·, θij) = 0 is not essen-
tial, but we use it because we assume the point of sharing
data is to improve the quality of information about a track
for a ship that already had responsibility for that track. Ad-
ditionally, we make the following monotonicity assumption:

Assumption 1. For all agents i, k, for all objects j:
w(q′kj , θij) ≥ w(qkj , θij) for all q′kj ≥ qkj .

The goal of the mechanism that we propose will be to de-
termine which data should be shared by which agents, to
make a bandwidth allocation decision. We use z ∈ {0, 1}nm

to denote this allocation decision, where zij ∈ {0, 1} denotes
whether agent i shall broadcast its data on object j.5 An al-
location decision z, together with the agents’ data d induces
an outcome x(z, d) ∈ Dnm, where xij(z, d) ∈ D is the data
broadcast by agent i about object j, and where ε denotes
no data:

xij(z, d) =

{

dij , if zij = 1
ε , otherwise

(1)

Of course, x(z, d) is only the true outcome if the agents are
in fact holding data d and obey the allocation decision z.
Later we will allow agents to deviate, first in reporting their
types, and then in their use of bandwidth and in the data
that they choose to broadcast.

4The implementation has been packaged for use by external
research collaborators and is available to researchers at the
Naval Postgraduate School (for more details see [9]).
5Note that we actually need a schedule of communication
and not just an allocation. This detail, however, is not im-
portant for the mechanism design, so we stick with z.

We will propose a mechanism that 1) must be able to de-
termine agents’ expected value given allocation z and agents’
types θ, and 2) must be able to determine agents’ realized
value given a particular outcome x. For this purpose we de-
fine a known value function, common to all agents that can
take either allocations or outcomes as its argument.6

First, we define agent i’s value function on allocations as
vi : {0, 1}nm × Θ → R≥0, where vi(z, θ) denotes agent i’s
expected value given allocation z and joint type θ. For this
version of the paper we make the following additivity as-
sumption on all value functions:

Assumption 2. The value function is additive across all
items and only depends on the quality of the data, i.e.:

vi(z, θ) =
∑

k∈N,k 6=i

∑

j∈G

zkj · w(qkj , θij) (2)

Note that a simple value function that fulfills the addi-
tivity assumption can be constructed via the Fisher infor-
mation metric. Because the Fisher information is additive,
the additivity of the value function follows immediately; see
Rogers et al. [13] for a discussion. It is a simple matter to
devise a more complex valuation model without affecting the
proposed mechanism. The main effect would be to make the
optimization problem that defines the social choice function
more complex.

When the agents receive data d, they can evaluate it
and determine its quality. We define the quality function
Q : Dnm → Rnm

≥0 , where Q(d) denotes the quality matrix q

corresponding to data d and Qkj(d) denotes quality qkj of
data item dkj . We normalize Q(·) such that Q(ε) = 0. Now
we can define an agent’s realized value for outcome x(z, d):

vi(x(z, d), θ) =
∑

k∈N,k 6=i

∑

j∈G

w(Qkj(x(z, d)), θij) (3)

Given a bandwidth constraint B ∈ Z>0, and agents’ joint
type θ = (s, q), we can define the social planner’s goal as
determining the optimal (i.e., efficient) bandwidth alloca-
tion z∗(θ) which, together with the agents’ data d, induces
outcome x(z∗(θ), d) ∈ Dnm, such that the total value to all
agents is maximized:

z
∗(θ) ∈ arg max

z

∑

i∈N

∑

k∈N,k 6=i

∑

j∈G

zkj · w(qkj , θij) (4)

s.t.
∑

k∈N

∑

j∈G

zkj ≤ B. (5)

The formulation assumes that broadcasting any data item
takes one unit of bandwidth. For each component zkj ∈
{0, 1}, the total objective value contribution simplifies to
Vkj(θ) =

∑

i6=k
w(qkj , θij), which is the total value accrued

by agents other than k when k broadcasts its data for object
j. Given this, the objective function is equivalent to:

z
∗(θ) ∈ arg max

z

∑

k∈N

∑

j∈G

zkjVkj(θ). (6)

Thus, the social planner’s problem can be solved in time
O(mnlog(mn)) by sorting all allocation components zkj and
then picking the B ones with the highest value Vkj(θ).

6It is not essential to our mechanism that the value func-
tion is known, but we adopt this convention here to keep
the presentation as simple as possible. Note that the value
function is still parameterized via an agent’s private type θi.
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In designing a mechanism, we assume that within the
network, there is a trusted center (or platform). This cen-
ter is responsible for collecting agents’ claims about their
types.We make the following assumption:

Assumption 3. The trusted center is able to observe the
data broadcast by the agents and interpret its quality.

Furthermore, the mechanism requires a form of currency.

Assumption 4. The trusted center can make and collect
payments in some currency to and from agents and agents’
value gain due to received data can be measured in units of
this currency. We assume that the agents have quasilinear
utility, i.e., given payment transfer ti ∈ R to agent i and
realized outcome x(z, d), agent i’s utility is:

ui(x(z, d), θ) = vi(x(z, d), θ) + ti. (7)

It is important that vi(x(z, d), θ) is a correct representa-
tion of value in the units of this currency. Without this
intrinsic value an agent would only seek to improve its pay-
ment and not care about the data received. We can relax
this in an alternate model by allowing agents to explicitly
report their complete valuation functions, even including
statements that they have zero value for data.

In the military context, while each ship is at sea, we sup-
pose the trusted center can perform accounting for the total
payment due to each ship (each ship can in turn publish a
policy on how accrued payment is to be distributed amongst
its personnel.) Upon completion of a mission, we then need
for this accrued payment to be converted into something
of value. This value can be realized in the form of promo-
tions and other rewards, for example getting a longer leave
or higher priority in getting a desirable posting in a future
mission.7 This incentive structure could be established as
part of planning a mission or a sequence of sub-missions.

3. TWO-STAGE MECHANISM DESIGN
We propose a new mechanism for bandwidth allocation

that operates in two stages, motivated by Mezzetti [11]. In
stage 1, agents report their reduced type to the center. Be-
cause agents are self-interested, we distinguish between an
agent’s report about its reduced type θ̂i = (ŝi, q̂i) and its

actual reduced type θi. Based on all agents’ reports θ̂, the
center computes the optimal bandwidth allocation z∗(θ̂).
Because the center cannot enforce an outcome, it only sug-
gests the allocation z∗(θ̂) to the agents. In stage 2, the
agents broadcast part of their data di to all other agents and
then the center makes payments contingent on the broadcast
data. However, an agent can choose to broadcast other data
than it actually holds. We will denote the broadcast data
agent i pretends to hold as di. Furthermore, an agent could
choose to use the bandwidth differently than suggested by
z∗(θ̂). Thus, each agent adopts a bandwidth use zi.

In stage 1, we allow agent’s type reports θ̂i to include
both overclaims and underclaims about the quality of the

7Navy personnel are rewarded based on how well they per-
form. For example, after action investigations and punish-
ments (negative rewards) are common for unsuccessful mis-
sions and it is reasonable to assume that positive rewards
are also possible. Of course, the appropriate sharing of data
has a direct impact on the performance of a mission. Thus,
rewarding the personnel based on the payments accrued in
the mechanism is consistent with the Navy’s general policy.

data they are holding. However, for stage 2 we assume that
agents cannot broadcast data of higher quality than they
actually have. More formally:

Assumption 5. An agent cannot increase the quality of
its data, i.e., Q(dij) ≤ Q(dij) for all agents i and objects j.

In our domain, this assumption seems well-motivated be-
cause an agent could always add noise to its data, thus de-
grade the quality of its data, without anyone ever noticing it.
However, when an agent tried to fabricate data that appears
to be of higher quality, there is a non-negligible probability
that this would eventually be detected by the trusted center
or other agents and then trigger an investigation with the
possibility of severe punishments.

3.1 A new Bandwidth Allocation Mechanism
We assume that the trusted center hosts the mechanism

and does not deviate from the rules of the mechanism.

Mechanism 1 (Bandwidth Allocation Mechanism)

1a. Each agent makes a report θ̂i ∈ Θi about its type.

1b. The center computes the optimal bandwidth alloca-
tion z∗(θ̂) ∈ {0, 1}nm and announces z∗ to all agents.

2a. Each agent adopts broadcast data di and bandwidth
use zi which induces outcome x(z, d).

2b. The center observes x(z, d) ∈ Dnm, and determines
payments for each agent i:

ti(x(z, d), θ̂−i) = (8)
∑

k 6=i

vk(x(z, d), θ̂) −
∑

k 6=i

vk(z∗(θ̂−i), θ̂) (9)

The information required in the second term in line (9) is
provided in the first stage of the mechanism via type reports
reports θ̂−i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂n). The additional
information required in the first term is available because
the center is able to observe x(z, θ) by Assumption 3.8

In establishing the incentive properties of the mechanism
we have two main items to establish in equilibrium:

• In step 1a, agents choose to make truthful claims θ̂i = θi.

• In step 2a, agents choose to follow the recommended use
of bandwidth z∗(θ̂) and also choose to broadcast unde-
graded data on the proposed objects.

When adopting both of these desired behaviors we say an
agent is faithful [14]. The strategy in this mechanism allows

for deviations θ̂i (in step 1a) and zi and di (in step 2a).

Definition 1. The faithful strategy is an ex post Nash
equilibrium of the mechanism whenever

ui(x(z
∗(θ), d), θ) ≥ ui(x(z, d), θ), (10)

for all i, all θi, all θ−i, all θ̂i, all di, all d−i, all di, all zi,
where z = (zi, z

∗
−i(θ̂i, θ−i)) and d = (di, d−i).

This requires that every agent maximizes its utility by
being faithful as long as the other agents are also faithful
and whatever the type of the other agents (note that this is
a stronger equilibrium notion than Bayes-Nash equilibrium).
8If the mechanism cannot directly observe the quality of
data actually realized (in step 2b), then this step can be
replaced by a consensus vote taken from the other agents.
We defer an analysis of this to a longer version of the paper.
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Theorem 1. Mechanism 1 is ex post Nash faithful and
efficient (allocates bandwidth to maximize agents’ values).

Proof. Assume agents 6= i are faithful and consider the
utility to agent i given that it can deviate in (θ̂i, zi, di):

vi(x(zi, z
∗
−i(θ̂i,θ−i), di, d−i), θ) (11)

+
∑

k 6=i

vk(x(zi, z
∗
−i(θ̂i, θ−i), di, d−i), θ), (12)

where the first term is i’s value realized from the data re-
ceived from other agents and the second term is the first
term in the payment equation (9). We can ignore the second
term in the payment equation (9) because it is completely
independent of agent i’s strategy. Given that i can’t up-
grade its data (Assumption 5) and given that others’ value
increases with the quality of data (Assumption 1), we first
observe that we can stipulate di = di, i.e. given the use of
bandwidth zi, agent i should broadcast non-degraded data.
This does not affect Eq. (11), and increases the value of

Eq. (12) whatever the choice of zi and θ̂i. In considering

the joint effect of zi and θ̂i, agent i now seeks to maximize

vi(x(zi, z
∗
−i(θ̂i,θ−i), d), θ)

+
∑

k 6=i

vk(x(zi, z
∗
−i(θ̂i, θ−i), d), θ) (13)

Note that the combined effect of zi and θ̂i is limited to its in-
fluence on the bandwidth allocation in this expression. Now,
since the other agents are faithful, when reporting true type
θ̂i = θi in step 1b of the mechanism, the center chooses
allocation z = z∗(θi, θ−i) across all feasible z to maximize

vi(z, θ) +
∑

k 6=i

vk(z, θ). (14)

Now, with truthful type reports θ, we can derive that an
allocation z that maximizes equation (14) at the same time
maximizes equation (13) because:

vi(z, θ) =
∑

k∈N,k 6=i

∑

j∈G

zkj · w(qkj , θij) (15)

=
∑

k∈N,k 6=i

∑

j∈G

zkj · w(Qkj(x(z, d)), θij) (16)

=
∑

k∈N,k 6=i

∑

j∈G

w(Qkj(x(z, d)), θij) (17)

= vi(x(z(θ), d), θ), (18)

Equation (16) follows because with truthful reports and di =
di we have that Qkj(x(z, d)) = qkj where zkj = 1. Equa-
tion (17) follows because xkj(z, d) = ε where zkj = 0 and
Q(ε, ·) = 0, thus we can drop the multiplication with zkj .
Therefore, the best strategy for agent i is to be faithful, i.e.,
to report θ̂i = θi, subsequently follow zi = z∗i (θ) and report
non-degraded data di. This completes the proof, when we
also observe that the outcome of the mechanism is efficient
with faithful agents.

This equilibrium is also robust to mistakes by other agents.
As long as agent i reports its own type truthfully in step
1a, its best-response in step 2a is to be faithful whatever
the strategies of other agents, including deviations by other
agents in both step 1a and step 2a. The only way in which
faithfulness is not a subgame perfect equilibrium here (i.e.

the best strategy even off the equilibrium path), is when

agent i itself deviates from reporting θ̂i = θi in step 1a, in
which case agent i might then be able to provide the other
agents with more value in step 2a by transmitting alternate
data (e.g., data for which it had understated the quality).

Example 3. Consider the example from earlier and in-
troduce an additional ship C with data of quality that gives
value 1 to the other ships. Suppose the ships report true
claims about the quality of their data. The center proposes
that ship A uses the bandwidth. In equilibrium, ship A broad-
casts its data without degradation and the center observes
that the data provides value 5 to ships B and C. With-
out ship A, based on reports from B and C, ship B would
share its data and the total value would be 2. Ship A re-
ceives payment 10-2=8. For ship B, with its presence ship
C is observed to obtain value 5. Without ship B, based on
reports, ship C would obtain value 5. Ship B receives no
payment. The same analysis holds for ship C. Ship A can
no longer improve its utility by overstating the quality of its
data because its payment would remain 8 since it depends
on the observed quality of the data actually broadcast. Simi-
larly, ship B is currently receiving utility of 5 (from the data
of ship A), and with a high claim of quality (e.g. 7) it would
be asked to share its data but would only receive a payment
of 4-5=-1 because it cannot improve the quality of its actual
data; its utility would fall to -1.

It is somewhat intricate to see that faithfulness is not a
dominant strategy. Note that in the above example, when
ship B overstates its quality (e.g. 7) then ship A’s utility is
2 + (2-7)=-3. This is because it receives data of quality 2,
ship C’s value is 2, and the value to the ships other than A
without A present only based on reported quality (which is
overstated) would be 7 (with ship B sending data to ship C).
But by reporting its own quality as 20, A would be asked to
share its data and receive a higher utility of 10-7=3.

Corollary 1. In the ex post Nash equilibrium of Mech-
anism 1, each agent’s payment is the total amount by which
its presence in the system improves the value to other agents.

Proof. In equilibrium, the payment is simply
∑

k 6=i

vk(x(z∗(θ), d), θ) −
∑

k 6=i

vk(z∗(θ−i), θ), (19)

which establishes the result given that z∗(θ−i) allocates the
available bandwidth to maximize the total value to agents
6= i when i is not present.

It is obvious that an additional agent in the system can
only increase but never decrease the total value accrued be-
cause in the worst case the center could always not allocate
to the agent. It follows that the mechanism is ex post indi-
vidually rational, such that no agent’s utility is ever negative.

To understand the budget properties, notice that in Ex-

ample 3, ship A receives a payment of 8 in equilibrium and
thus the mechanism runs at a deficit. However, a budget
deficit does not seem very problematic in our context of a
military deployment, because it is expected that agents will
generate credits through their participation in the mecha-
nism. However, this problem would need to be addressed in
commercial applications. Our last example illustrates that
sometimes, agents can also be required to make payments.
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Example 4. Consider three ships A,B and C, and three
objects 1, 2, 3, where only one piece of data can be broadcast.
Ship A has data quality that provides value 5, 0, 0 for objects
1, 2 and 3 respectively to the other ships, similarly ship B

has data quality that provides value 7, 8 and 10 and ship C
data quality that provides value 8, 7 and 5. Ship A does
not have objects 2 and 3 in its region of observation. In
equilibrium, ship C shares data on object 1 with ships A and
B. The payment to ship A is 8 - 10 = -2, 8 since ship B

gets value 8 from the data of ship C and -10 since ship C

would get data of value 10 from ship B without the presence
of A. Thus, ship A imposes an externality on ships B and
C and must make a payment. The other payments in this
example are 8-8=0 by ship B and 16 − 7 = 9 by ship C.

As this example illustrates, in our domain, we would need
to take steps to achieve fairness across agents because differ-
ent ships may have different inherent data collection capabil-
ities. For example, depending on a ship’s radar equipment,
some baseline payment (positive or negative) could be set a
priori before a mission.

3.2 Relation to the Mezzetti Mechanism
Mezzetti [11] recognized that the impossibility results re-

lated to mechanism design with interdependent values can
be avoided if (a) values are privately realized by the agents
once an allocation is made, and (b) two-stage mechanisms
can be adopted in which payments are made contingent on
realized values that are reported in a second stage.

The analog in our setting is that recipients of data can de-
termine its quality and thus the realized value. But before
the allocation of bandwidth is determined, the mechanism
can only rely on reports on quality of data from prospective
senders. In the simple context of Example 2, the mecha-
nism proposed by Mezzetti would receive claims about qual-
ity from A and B and then ask A to broadcast data, because
it is of higher quality and thus of more value to B then B’s
data is to A. Then B would be asked to make a report about
the value of the data received and A would receive this as
a payment. Here we see the fragility of the mechanism: B
is indifferent at the second stage between reporting the true
value realized from the data or any kind of misreport. More-
over, collusive deviations are easy, with B over-stating value
in return for a cut of the payments received by A.

While conceptually similar to that of Mezzetti, our mech-
anism avoids these problems. The equilibrium properties do
not rely on agents correctly reporting their realized values.
We can avoid this because it is reasonable to assume that
the trusted center is situated within the network and can ob-
serve the quality of broadcast data, and thus infer for each
agent its value from the realized outcome. Unlike Mezzetti,
we are also able to collect VCG-like “charge-back”payments
(the second term in payment Eq. (9)) for a similar reason:
the agents’ reports reveal enough information to the center
to determine the total value excluding any particular agent.

4. CONCLUSION
We have introduced an incentive compatible mechanism

for efficient bandwidth allocation in a tactical data network.
Inherent to every data sharing domain is the problem with
interdependent valuations. The mechanism we propose is
based on a two-stage mechanism introduced by Mezzetti [11]
and circumvents the well-known impossibility results for in-
terdependent value settings.

Future work should consider in particular the dynamics
of the problem. The current solution is stationary, with
the same communication tasks performed every network cy-
cle. In practice, forward-looking schedules are necessary (for
efficiency and incentive compatibility purposes) which re-
quires a dynamic mechanism design approach [12]. Further-
more, we consider making the tradeoff between latency and
data quality endogenous, with agents reporting preferences
about this tradeoff. We also intend to allow for non-linear
valuations, and to couple this with private valuation func-
tions. This research also raises interesting questions about
the use of payment schemes in operational contexts such
as those presented by military domains. The best way to
provide “after-action” rewards commensurate with the ag-
gregate payments accrued during the execution of repeated
mechanism instantiations remains to be determined.
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