Verifying Forwarding Plane Connectivity and Locating Link
Failures using Static Rules in Software Defined Networks

[Extended Abstract]

Ulas C. Kozat, Guanfeng Liang and Koray Kokten
DOCOMO Innovations, Inc., Palo Alto, CA 94304
Email: {kozat,gliang,kkokten}@docomoinnovations.com

ABSTRACT

We present efficient solutions that install static rules on the
forwarding elements such that network controllers use these
rules to verify topology connectivity and locate link failures.
For a forwarding plane with |E| links, we verify topology
connectivity using < 2|E| static rules and one control mes-
sage. We guarantee locating at least one link failure using
< 6|E] static rules and ©O(log(|E|)) control messages. We
can also detect multiple link failures in a probabilistic sense.

Categories and Subject Descriptors

C.2[COMPUTER-COMMUNICATION NETWORKS]:

Network Operations— Network monitoring

Keywords
SDN, OpenFlow, Verification, Failure Detection

1. INTRODUCTION

In SDNSs, presumably, controllers maintain a global view
of the forwarding plane and data flows to take the correct
actions against the network events. This might not always
be possible due to control plane issues such as failures, over-
load, slow-path, or malicious behavior.

As a back up, network controllers can directly use the for-
warding plane by allocating a fraction of hardware forward-
ing rules on each switch to check and verify forwarding plane
properties at forwarding plane speeds. This idea in general
might be infeasible or too costly for arbitrary properties.
This paper presents that for at least two critical cases, i.e.,
verifying topology connectivity and locating link failures, it
is feasible and efficient to use hardware rules. Our results
are strong in the sense that: (i) As long as an arbitrary
controller can reach an arbitary switch, it can verify topol-
ogy connectivity and locate an arbitrary link failure. (ii)
The number of forwarding rules to install and the number
of control messages to inject are optimal or near-optimal.
For a forwarding plane with |E| links, we verify topology

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotSDN’13, August 16, 2013, Hong Kong, China.

ACM 978-1-4503-2178-5/13/08.

157

{2 Network Controllers

Forwarding Plane

Control Interface

Forwarding Interface

Figure 1: System Model

connectivity using < 2|E| static rules and one control mes-
sage. We guarantee locating an arbitrary link failure using
< 6|E| static rules and ©(log(|E|)) control messages. (iii)
All controllers use the same static forwarding rules.
System Model and Assumptions: At any given time,
each controller C; has a control domain D¢, that it can di-
rectly monitor and program. Each link is assumed to be
bidirectional. We assume that an OpenFlow-like protocol is
run between the controller and the switches in D. Switches
check only the health of their local interfaces. Thus, a con-
troller does not receive any failure notifications or topol-
ogy updates about the interfaces between the switches in
its D. E.g., in Fig. 1, forwarding plane has seven switches
(s1 through s7) and nine links between them. C3 has ac-
tive control connections with D¢, = {84787} whereas has
no active control interfaces with Doy, = {s1, 52, 53, 55, 56}
A link failure between s2 and s3 is not reported to Cs by
s4 or s7. Controllers together compute and install a set of
static rules onto the switches that they use later for topology
verification and failure detection as described next.

Vi

€5/ c,

N,
N k
vals) ey, loopback
e

e \ Wope: Clockwise Walk Rules et
i 56

H
3y}
()

\e36
N\ «— Wop; to Wy, Bounce Back
Rules

H
Wpe: Counter Clockwise €gs!

Walk Rules

Figure 2: Bidirectional Logical Ring Topology

2. SOLUTION

The first step of the solution is to compute a minimum
length cycle Wope with length |Wo,:| that visits every link
in the forwarding plane at least once. If both directions of a
link must be inspected, the forwarding plane is represented
as a directed graph with 2|E| arcs. Otherwise it is repre-
sented as an undirected graph with |E]| edges. In directed
graph case, for each link we have two arcs which guarantees
that Euler cycles of length 2|F| exist (i.e., each direction
of each link is visited exactly once) and they can be com-
puted in O(|2E]) time steps. For general graphs, finding a
minimum length cycle that visits every edge at least once is
known as Chinese Postman Problem and it has a polynomial
time solution for undirected graphs [1]. Since the optimum
walk cannot be shorter than |E| and longer than the walk
for the directed graph case, |E| < |[Wopt| < 2|E|. As the
forwarding plane consists of bidirectional links, the reverse
walk W;pt also exists. Wopt and W;pt together define a
bidirectional logical ring topology Gr (see Gg in Fig. 2 for
the topology in Fig. 1).

For topology verification, it suffices to install forwarding
rules for Wopt (i.e., clockwise direction on Ggr). Let e;;
denote the arc from s; to s; and l;; denote the virtual arc
from v; to v;. One rule at each v; in the form if {label==l;;
A packet ID==y} then {label := lji N forward to switch
vk } realizes Wope. For l;;’s with 1-1 mapping to any port,
instead of label, forwarding rule can use switch port ID.
On GRg, if an arc appears multiple times in clockwise direc-
tion, they can share the same forwarding rule with proper
label push/pop/swap actions. Thus, physically, we install
(|[Wopt| — k) static forwarding rules overall, where & is the
number of duplicate arcs on Ggr. To verify topology, a con-
troller attaches to any switch in its D and injects a control
packet with the proper header fields. Controller also installs
a dynamic rule at the point of injection to loopback the
packet. The loopback rule must be specific to the controller
to allow distinct controllers use the ring at the same time. If
controller receives its packet back, topology is verified. Oth-
erwise, there is at least one interface at fault or missing. For
directed graphs, in number of control packets and forward-
ing rules, this becomes optimum. For undirected graphs,
we have order optimality in number of static rules because
|E] < ([Wopt| — k) < 2|E|. Also, the latency of topology
verification is |Wope| - 7, where 7 is per hop switching delay.

For locating a single link failure, we install static rules for
Wopt, W;pt and bounce back rules from Wgpt to W;pt.

Static rules for W;pt are computed the same as Wept by
labeling arcs in the counter clockwise direction on Gr. We
need one bounce back rule for each arc on Wopt to revert
the walk. Hence, total number of static rules are 6|E| and
(3:|Wopt| —2k) for directed and undirected forwarding topol-
ogy graph, respectively. We also need a dynamic rule to loop
back the packet to the controller at the injection point. Lo-
cating link failure then becomes a simple binary search over
Gr. At each iteration, a control packet is sent to a different
bounce back point as specified in the packet header such that
half of the candidate failure locations on Gg are eliminated
from further consideration. Overall, log,(|Wop:|) messages
are injected sequentially. Thus, the latency of locating link
failure becomes less than or equal to |[Wopt| - logy (|Wopt|) - 7.

Performance Evaluations: We use topologies available
in Internet Topology Zoo to evaluate |Wop|/|E| as the mea-

158

pessStianl

80 90 100

205
z

40 50 60 70
Topology Number

Figure 3: Performance in terms of Wy, |/|E|

sure of performance. Fig. 3 plots |[Wopt|/|E| only for undi-
rected graphs as |Wope|/|E| is always two for directed graph
case. For around 11% of the topologies (e.g., for star and
tree topologies), each link must be visited in both directions
matching this upper bound. Less than 6% of the topologies
has an Euler cycle and no links has to be visited multiple
times. To put things into context, suppose the network uses
fully connected 48-port switches. Performing both topol-
ogy verification and failure localization would cost less than
3 X 96 static rules per switch. For a switch with 10K hard-
ware forwarding rules, this corresponds to < 3% overhead.

3. DISCUSSION AND FUTURE WORK

Maybe the closest work to ours is the concept of using pre-
configured optical paths for fault diagnosis (i.e., monitoring
trails or m-trails) in all optical networks [2, 6]. In our work:
(i) we do not know assume a priori knowledge on available
monitoring points (e.g., any switch is a candidate monitoring
point); (ii) different controllers use the same static rules;
and (iii) costs are different. In SDN domain, several works
on network debugging, fault diagnosis and detection, policy
verification, dynamic and static state analysis exist [3, 4,
5]. Installing static forwarding rules to be used for later
forwarding plane diagnosis, optimizing the associated costs,
and not requiring any specific attachment points are our
unique contributions.

The logical ring can be used to locate more link failures.
E.g., controller can inspect the ring from different attach-
ment points in its D and bounce back rules that map W;pt
to Wopt can be installed to examine the ring in both direc-
tions. Though guaranteeing the detection of multiple link
failures is not a solvable problem in general, probabilistic
guarantees are possible. As another direction, we look into
finding efficient solutions that trade-off control message over-
head for reduced latency by sending packets in parallel.

4. REFERENCES

[1] J. Edmonds and E. L. Johnson. Matching, Euler tours
and the Chinese postman. Mathematical
Programming, 5(1):88-124, Dec. 1973.
S. Ahuja et al. SRLG failure localization in all-optical
networks using monitoring cycles and paths. In
INFOCOM, 2008.
N. Handigol et al. Where is the debugger for my
software-defined network? In HotSDN, 2012.
P. Kazemian et al. Header space analysis: Static
checking for networks. In NSDI, 2012.
A. Khurshid et al. Veriflow: Verifying network-wide
invariants in real time. In NSDI, 2013.
J. Tapolcai et al. On monitoring and failure

localization in mesh all-optical networks. In Infocom,
2009.

2]

3]
[4]
[5]

[6]

