

2. NETWORK MODEL

As we have argued, on-demand content delivery and pub-
lish/subscribe event notification have fundamental common-
alities that suggest a synergistic implementation in a unified
content-based network [1]. We now describe the architecture
of such a network.

We start with network addresses: descriptors. Descriptors
correspond to the names and prefixes of the NDN network
model [7]. Thus, they are associated with information of
interest. Furthermore, they are used to express immediate
interests that represent requests in on-demand content de-
livery, and continuing interests that represent subscriptions
in publish/subscribe event notification.

More specifically, in on-demand content delivery, descrip-
tors play three roles: (1) a producer registers one or more
descriptors that identify the data that the producer is willing
and able to provide; (2) a consumer requests a data packet
by issuing an interest carrying a descriptor that specifies the
requested data packet; and (3) a producer responds to an in-
terest by returning a data packet (i.e., the content) carrying
a descriptor that identifies the data. In publish/subscribe
event notification, descriptors play two roles: (4) a consumer
registers one or more descriptors that specify the data that
the consumer wishes to receive and (5) a producer issues a
data packet carrying a descriptor that identifies the data. To
avoid ambiguities, we refer to these five roles, respectively,
as producer offer, consumer request, producer data reply,
consumer subscription, and producer notification; we avoid
the term “interest” to avoid confusion between immediate
interests (requests) and continuing interests (subscriptions).

The semantics of descriptors determine the matching re-
lations between descriptors in their various roles: how data
replies match requests, how offers match requests (and,
therefore, how offers describe the data available from a pro-
ducer), and how notifications match subscriptions.

As discussed so far, descriptors are abstract and generic.
Indeed, much of what we propose is conceptually indepen-
dent of their specific form and semantics. However, we must
be specific in order to develop a concrete routing scheme.
For this purpose we adopt “tags”.

A descriptor consists of a set of string tags, with the
matching relations corresponding to the intuitive subset re-
lations between sets of tags. Specifically, a descriptor D in
a data reply would match a descriptor R in a request when
the reply contains all the tags of the request, that is, when
D O R. Consistently, a descriptor R in a request would
match a descriptor O in an offer when the request contains
all the tags of the offer, and thus R O O. Also consistently,
a descriptor N in a notification would match a descriptor S
in a subscription when the notification contains all the tags
of the subscription, and thus N O S.

Tag-based descriptors illuminate the commonalities of on-
demand content delivery and publish/subscribe event noti-
fication, suggesting an implementation of both using a uni-
fied FIB. For on-demand content delivery, the FIB directs re-
quests toward hosts that are willing and able to satisfy them
(with corresponding data replies); for publish/subscribe
event notification, the FIB directs notifications toward hosts
that are willing to receive them. So, both forms of commu-
nication allow hosts to declare which messages they intend
to receive—requests in on-demand content-delivery and no-
tifications in publish/subscribe event notification—and their
difference is simply the source of the routing information—

forwarding

_ r tables

register(predicate) p ole o

a set of descriptors
offers + subscriptions
01,02,03,. ..

51,852,853, ... data)

S I - (notification:
descriptor,

€ === === == = (request:
descriptor)

(reply:descriptor, data

Figure 1: Unified Content-Based Network Layer

producers in on-demand content-delivery and consumers in
publish/subscribe event notification.

In terms of data traffic, the difference between the two
primitives is a bit more involved. Both requests and event
notifications are forwarded along paths toward matching de-
scriptors. However, an interest is expected to generate a
corresponding reply, while an event notification is a one-way
message. Furthermore, the caching semantics are different.
A request that can be satisfied by cached content will not be
forwarded downstream toward the original producer node,
while an event notification must be forwarded all the way to
interested consumers (although the event notifications might
be cached for reliability purposes).

In summary, a common content-based layer is config-
ured through the registration of descriptors that define a
descriptor-matching predicate as a host address, and ex-
ploited using three types of messages: one-way notifications
(“push”), requests that expect a reply (“pull”), and data
replies. This network interface is illustrated in Figure 1.

3. ROUTING SCHEME

We propose a routing scheme based on multiple trees. In
essence, the scheme is a simple routing scheme on a tree
cover, extended with multiple trees within the same network
domain and across network domains. We start by describing
the scheme on a single tree.

Consider a network spanned by a tree T. T is identi-
fied within each notification and request packet so that each
router v can determine the set adjf of its neighbors that
are also adjacent to v in 7. This can be done by adding an
identifier for T in the packet and storing the adjacency set
adjf at each router v, or in a completely stateless manner
by encoding the whole tree T' within a packet header [8].

The FIB of router v associates each neighbor w in adjf
with the union Pr ., of the predicates advertised by all the
hosts reachable through neighbor w on T' (including w). An
example is shown in Figure 2.

Given a FIB representing Pr ., for each adjacent router w
in adjT, forwarding proceeds intuitively as follows: Router
v forwards a notification with descriptor N received from
neighbor u to all neighbors w # w in adeT whose associ-
ated predicate Pr. matches N. (A predicate P matches
a descriptor X if any one of the descriptors in P matches
X.) Similarly, router v forwards a request with descriptor

router b: tree T',next-hop w — predicate Pr
(FIB) Ti,c = pcVpgVpr
Ty, f = prVp;Vopk
Ti,e — pa VpaV peV pi
To,c — peVpn
To,e = paVpaVpeVpsVpgVpiVp;Vpe

ce0®00 0o,

trees
——

ceeee Ty

Figure 2: Multi-Tree Routing Scheme

R received from neighbor u to one neighbor w # u in adj f
whose associated predicate Pr . matches R.

3.1 Using Multiple Trees

Routing on a tree cover has two disadvantages. First,
paths might be “stretched”, meaning the distance between
two nodes on the tree might be longer than on the full graph.
For example, in tree 711 in Figure 2, the distance between
nodes 7 and j is as high as 4 hops, whereas the distance in the
full graph is only 1 hop. Second, traffic would flow only on
the tree, thereby reducing the overall network throughput.

These problems can be alleviated by using multiple trees,
each with their own forwarding state. A notification or re-
quest is committed to, and thereafter routed using, one of
those trees. Multiple trees may be interchanged by gate-
way routers in a hierarchical routing scheme. The choice of
trees, both in the way they are built and in the way they
are assigned by gateway routers, can be used to implement
various routing strategies. For example, a domain hosting
a popular content producer may build and use one or more
shortest-paths trees rooted at that producer so as to reduce
latency and spread traffic.

3.2 Memory Complexity and Implementation

A network in which addresses consist of descriptors chosen
by applications (as opposed to identifiers chosen by the net-
work provider) raises a question of scalability for the FIB.
The central question is to what extent addresses aggregate.
Furthermore, there is a question of cost for maintaining FIBs
representing multiple trees. We first discuss aggregation of
predicates within a single tree, and then discuss aggregation
across trees. Lastly, we present an efficient implementation
of compact FIBs.

3.2.1 Destination Grouping

Descriptors aggregate in a way that is analogous to the
aggregation of IP prefixes [4]: predicates registered for dif-
ferent destination hosts may lead to an aggregated repre-
sentation when they are associated with the same interface
in a FIB. This amounts to representing a logical disjunction
of predicates with a more compact representation than the

simple list of individual predicates, similar to per-interface
aggregation of group addresses in IP multicast [10]. Specif-
ically, a descriptor X subsumes all other descriptors Y that
contain X. For example, if two applications register sub-
scriptions {networking, conference} and {networking}, re-
spectively, and if both are reachable through the same inter-
face, then a router may ignore the first descriptor, since any
notification matching the first would also match the second.
In Section 4 we show experimental evidence that descriptor-
based predicates aggregate well in practice.

3.2.2 Tree Grouping

In general, multiple trees require more forwarding state.
In fact, there is a trade off between the cost of increased
forwarding state and routing complexity, on the one hand,
and path stretch and congestion on the other. At one ex-
treme, the case of a single tree incurs the worst stretch and
congestion. At the other extreme, one shortest-path tree
rooted at each source (so that each notification or request
could be routed on their absolute shortest paths) incurs a
large amount of forwarding state.

This trade off has been studied extensively from a theo-
retical perspective, but such studies have had arguably lit-
tle impact on the practical design of Internet routing, per-
haps because even an asymptotically constant stretch is con-
sidered unacceptable. Our intuition, confirmed by the ex-
perimental analysis presented in Section 4, is that in prac-
tice near-optimal paths are possible at a reasonable price in
terms of forwarding state.

A first idea is to aggregate across trees. Observe that,
depending on the choice of trees, and sometimes depending
only on the network topology, some trees might partially
overlap. If trees overlap, or even if they do not overlap com-
pletely but they share the same mapping of destinations
to interfaces on some routers, then those trees are indis-
tinguishable for the purpose of forwarding at those routers.
This means that those routers can collapse the otherwise
separate representations of the two trees in their FIBs.

However, as it turns out, computing and maintaining the
indistinguishability between trees is complex, also because
the relation may be different for each router. And doing so
purely on the basis of the network topology, ignoring the
association of predicates to trees, may be ineffective. There-
fore, our second and more interesting idea is to combine
the aggregation of trees with, and transform into, the ag-
gregation of predicates. We achieve this with a simple and
yet effective multi-tree FIB transformation that we call table
folding.

3.2.3 Table Folding

A naive implementation of the FIB would amount to a
separate forwarding table for each tree. This is illustrated in
Figure 3 (top) using the example network of Figure 2. Notice
that such a structure maintains a separate per-source, per-
branch mapping of predicates. If, instead, we could some-
how fold the tables together by joining the predicates into
larger disjunctions, then we can create new opportunities to
perform logical simplifications that lead to smaller memory
representations.

In our scheme we do this by artificially creating a new tag
that we call the tree tag and incorporating this tag into per-
link (i.e., per-interface) predicates. The result is a folded
table exemplified in the bottom of Figure 3. In the folded

FIB of router b (Figure 2)
tree T',next-hop w — predicate Pr
Ti,c = peVpg Vph
Ty, f = prVp;Vpk
Ti,e = paVpaVpeVpi
T5,¢ = pcVpn
Toe = paVpaVpeVpsVpgVpiVp;Vpk

g
FIB of router b (Figure 2)
next-hop w — predicate Pi .
¢ = peVorV (“Ti” Apg)
f= (T Apg) Vv (T Apy) V (“Th A pr)
e = paVpaVpeVpi V(T2 Aps)V (“T2" A py)
VT Apg) V (T2 A i)

Figure 3: Folding Tree Selection into Predicate
Matching

table we use the abbreviated notation (“T;”Apz) to refer to a
predicate consisting of all the descriptors in p,, each with an
added tree tag “I;”. Correspondingly, the same special tree
tag “T;” is added to all notifications and requests forwarded
along tree 7;. Notice that the folded table must associate
a predicate (“T;” A pz) to an interface w for each tree T; in
which predicate p, is associated with neighbor w. This is
the case, for example, for predicate p, and neighbor e in
Figure 3. However, since p, is associated with neighbor e
on all trees (T1 and T3), then the folded FIB can use the
simple predicate pq.

Notice how tree aggregation translates into a simple
matching problem, and how the translation allows for log-
ical simplification and compression of predicates. Specifi-
cally, notice that adding tree tags to all predicates amounts
to exploiting the indistinguishability of trees implicitly.

In practice, for the experimental evaluation presented in
Section 4, we use an implementation of forwarding tables
that performs predicate aggregation by removing redundant
descriptors. Also, in order to obtain a compact representa-
tion, we use Bloom filters to represent tag sets.

4. EVALUATION

We now present the results of an experimental analysis
of the scalability of the proposed multi-tree routing scheme.
Beyond this, we also attempt to answer the more funda-
mental question of the scalability of routing in information-
centric networks. Specifically, the two main questions we
pose are: (Q1) to what extent is it possible to use trees
to route traffic over the Internet and (Q2) to what extent
do user-defined descriptor-based addresses aggregate at the
global scale. The first question leads to a conceptually sim-
ple analysis, since it examines some topological properties
of the current Internet. The second question is conceptu-
ally more complex, primarily because it involves many more
unknowns, since it requires the analysis of plausible future
usage patterns and, in particular, the analysis of the ways in
which applications would describe and access information.

4.1 Internet Topology and Trees

As we argue in Section 3.2.2, trees pose a trade off between
traffic overhead and the cost of processing and storing mul-
tiple trees. Thus, on the one hand, we want to characterize

the traffic overhead as a function of the number of trees and,
on the other, we want to characterize the memory costs and
the ability to aggregate multiple trees.

We conduct our analysis on the Internet AS-level topol-
ogy' consisting of a graph of 42113 nodes and 118040 edges.
We then simulate our scheme by constructing sets of k tree
covers as follows: We choose k nodes at random by selecting
Tier-1, Large ISP, Small ISP, and Stub ASes with proba-
bility 40%, 30%, 20%, and 10%, respectively, where Large
ISP, Small ISP and Stub are ASes with a customer tree
of 50 or more, between 5 and 50, and less than 5, respec-
tively. We then use k shortest-paths trees, each rooted at
one of the k nodes. We repeat this selection 20 times for each
value k = 8, 16, 32, 64, 128 and, for each selection, we analyze
(1) for all pairs of ASes, the average and maximal additional
path lengths over the k trees, which gives an indication of
the traffic overhead, and (2) the number of distinct trees as-
sociated with each interface across the network, which gives
a high-level indication of the memory complexity.

LTITY

Figure 4: Additional Cost: Average and Maximum

Avg/Max Additional Path Length (Hops)
w
T

The analysis of the traffic overhead is summarized in Fig-
ure 4. For the various sets of k = 8,16, 32,64, 128 trees, the
top and bottom box plots show the distributions of the max-
imum and average (i.e., expected) additional path lengths,
respectively. The box plots extend from the 1% to the 99"
percentile. This analysis shows that, in expectation, a k-tree
can approximate the optimal routing paths quite well, even
with just a few trees. In particular, with only 8 trees, path
lengths are extended on average by between 1 and 2 hops
and, in the worst case, between about 2.5 and 5.5 hops.

The analysis of the memory complexity is summarized in
Figure 5. For the different sizes k of the pool of trees, the
chart shows the distribution of distinct trees associated with
each interface in all the FIBs across the network from the 15¢
to the 99" percentile. However, we note that the maximum
(in the 100" percentile) extends to much higher values for
large sets of trees. In particular, the maximum value is
90 for £ = 128. Still, this analysis gives very encouraging
results, since it essentially shows that, even with many trees,
routers must store only a handful of trees per interface. In
other words, this analysis shows that trees aggregate well.

4.2 Scalability of Descriptors

The previous analysis gives a high-level indication of the
feasibility of a multi-tree scheme by showing that trees in-

http://irl.cs.ucla.edu/topology/, retrieved 29/06/2012.

Distinct Trees per Interface
©
T

!

128

Figure 5: Effective Aggregation of Trees

deed aggregate. However, in order to meaningfully analyze
the scalability of the scheme, and also evaluate the feasibil-
ity of descriptor-based routing, we must populate the FIBs
with plausible sets of descriptors. To that end, we study
user behaviors for a number of significant and widely de-
ployed applications. Notice that this analysis is speculative
in nature, since the representative applications for which we
have significant traces are built for a traditional network in-
terface. Therefore, we must carefully extrapolate plausible
future user behaviors over an information-centric network.

4.2.1 Application Workloads

We consider three classes of applications: (1) “pushing”
generic Web content and blog posts; (2) “pulling” video con-
tent; and (3) “pushing” short messages and following short-
message publishers. We now discuss each class of application
and the corresponding network workload.

Active Web. We envision a future information-centric
network used to actively distribute Web content. So, rather
than analyzing traditional Web requests in terms of access
to individual servers, we try to understand what users are in-
terested in, which in turn defines the descriptors in subscrip-
tions that would populate FIBs. Since we cannot gain access
to comprehensive per-user Web-access logs, we instead infer
user interests by analyzing the content that users bookmark.
We used the bookmark collection of the Delicious website,?
which contains the public bookmarks of about 950,000 users
retrieved between December 2007 and April 2008 [11]. The
data set contains about 132 million bookmarks or 420 mil-
lion tag assignments posted between September 2003 and
December 2007. We assume that users are interested in the
content they bookmark, and that they describe the content
with the tags they assign. Therefore, we derive plausible
subscriptions from user tag sets. We slightly clean the data
by applying a simple language-based summarization using
stemming and removing duplicate tags. In total we derive
123,248,896 subscriptions for 922,651 users.

We also analyzed data collected from blogs. In particular,
we studied the Blog06 collection,® which contains 3,215,171
blog posts from 100,649 unique blogs. We use the well-
known latent Dirichlet allocation (LDA) algorithm to ex-
tract 400 topics that cover these blog posts. We then assume
that an author has an active interest in a specific topic if

Zhttp://delicious.com
3http://ir.dcs.gla.ac.uk/test_collections/blog06info.html

they write more than two relevant posts on that topic. We
consider a post to be relevant to a certain topic only if the
probability of the post being classified under that topic is
more than 20%. For each topic, we select the 10 most rele-
vant tags and use them as a descriptor of the blogger’s inter-
ests. Ignoring irrelevant posts and users with no significant
interest in any topic, we identified 59,185 blogs with 178,189
relevant posts from which we could derive subscriptions.

Video Content. A future information-centric network
will facilitate decentralized distribution of video content. In
order to determine which content could be offered by users,
which in turn determines the descriptors that would popu-
late FIBs, we analyzed data from YouTube. Uploaders of a
YouTube video can assign keywords to their videos to allow
viewers to find those videos with keyword searches. These
keywords were publicly visible until two years ago. In par-
ticular, we analyzed a data set derived from 10351 videos
published by 782 uploaders in the “Politics” category.

Social Messaging. We analyzed two different aspects
of a Twitter data set to generate workloads for a plausible
future messaging service. We take into account the struc-
ture of the social graph of followers (who follows whom) as
well as the content of tweets. Specifically, we assume that
followers are generally interested in the messages posted by
the authors they follow. We therefore derive plausible sub-
scriptions issued by the followers. We use a graph of 41.7
million Twitter users and 1.47 billion follower relations. For
the content we use a collection of 16 million tweets recorded
during two weeks in 2011, corresponding to 1% of the to-
tal tweets during that period. A Twitter user can attach a
number of “hashtags” to each tweet so that other user can
issue searches by hashtag. A user can also include links to
other content on the Web. Out of the 16 million tweets, we
consider those that have both hashtags and links. We collect
the hashtags assigned to each link as a descriptor for that
link, and then we use these descriptors as the subscriptions
for the users who tweeted that link. In total we collected
446,370 subscriptions for 349,753 users.

4.2.2 Assigning Interests to Users

In our analysis we simulate 2.5 million clusters of users to
represent a total population of 2.5 billion individual users.
We assign user clusters to ASes according to the estimated
population of real users for each autonomous system. We
then elect among them the users that use each class of ap-
plication, with an estimated probability derived from the
current user population for each of those applications.

For the active Web application, we assume that half the
user population is interested in Web content, and adopt the
estimate made by NM Incite* of 181 million blogs around
the world by the end of 2011. Since we did not find data
on the actual number of blog readers globally, we used the
total number of blogs as the number of users of this ser-
vice. For the video application, we use the population of
800 million users advertised by YouTube and an estimated
10.9% fraction of uploaders [6]. Finally, for the social mes-
saging application, we adopted the Semiocast estimate of
more than 500 million Twitter users in June 2012.5

“http:/ /www.nielsen.com /us/en /newswire/2012/buzz-in-the-
blogosphere-millions-more-bloggers-and-blog-readers.html
®http://semiocast.com/publications/2012_07_30_Twitter_
reaches_half_a_billion_accounts_140m_in_the_US

4.2.3 Simulation Results and Discussion

Table 1 highlights some results of our simulation anal-
ysis. We build the FIBs of a gateway router for each of
the 42,112 ASes and report the main characteristics of the
FIB, including the actual memory required by a concrete
implementation of the FIB (emulated). The table shows the
results for the most central and, therefore, the most heav-
ily loaded router in the network in the presence of a single
tree T. We consider all the interfaces that have associated
predicates (interfaces that are not on 7" have no predicates),
as well as the largest interface that connects the router to
the highest number of final destinations. The FIB represents
an original workload of 85 million descriptors for a total of
276 million tags. However, only about 11 million descrip-
tors must be stored in the FIB for a total memory footprint
of 518MB. This memory requirement corresponds to an im-
plementation with Bloom filters of 400 bits that, according
our rough calculations, guarantee a false-positive probability
of less than 1072 for even the largest predicate.

All Interfaces Largest
Interfaces 325 1
Destinations 42112 6,559
Tags 276,501,173 35,814,399
Original Descriptors 85,504,514 10,727,593
Actual Descriptors 10,880,657 1,145,713
Size (MB) 518.83 54.63

Table 1: Worst-Case Memory Requirements for a
Single Tree

The results for a single tree are positive. But more impor-
tantly, when combined with the analysis of the aggregation
of trees in Figure 5, these results suggest that the FIBs of
even the most central routers would remain manageable un-
der current hardware technology. In other words, our anal-
ysis suggests that routing in an information-centric network
can scale, despite or perhaps thanks to the use of expres-
sive descriptors. Our key insight is in fact that user-defined
addresses would have no chance of scaling in the absence
of intrinsic commonalities, and that such commonalities are
more likely to be found in expressive descriptors than in
rigid names or, worse, flat labels.

S. CONCLUSION AND FUTURE WORK

To conclude, this paper makes two contributions. First, it
proposes a relatively simple and yet effective multi-tree rout-
ing scheme to support on-demand content delivery as well
as publish/subscribe event notification in an information-
centric network with descriptor-based addresses. Second,
it attempts to analyze the feasibility of the routing scheme
at a global scale using plausible applications for a future
information-centric network carefully extrapolated from ex-
isting, traditional-network trace data.

One way the scheme and its experimental evaluation
should be extended is to study and optimize the use of multi-
ple trees for various network design goals such as maximum
throughput and congestion minimization. The problem of
decomposing networks into trees for the purpose of routing
is well studied in the theoretical literature [9]. However,
keeping with the spirit of this work, we want to find practi-
cal solutions for the concrete case of Internet topologies and
plausible descriptor-based workloads.

Acknowledgments. The work of M. Papalini was spon-
sored by the Swiss National Science Foundation under grant
200021-132565. The work of A.L. Wolf was sponsored by the
U.S. Army Research Laboratory and the U.K. Ministry of
Defence under agreement W911NF-06-3-0001.

6. REFERENCES

[1] A. Carzaniga, M. Papalini, and A. L. Wolf.
Content-based publish/subscribe networking and
information-centric networking. In Proceedings of the
ACM SIGCOMM Workshop on Information-Centric
Networking, Aug. 2011.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer
Systems, 19(3):332-383, Aug. 2001.

[3] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A
routing scheme for content-based networking. In
Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), Mar. 2004.

[4] A. Carzaniga and A. L. Wolf. Content-based
networking: A new communication infrastructure. In
NSF Workshop on an Infrastructure for Mobile and
Wireless Systems, number 2538 in Lecture Notes in
Computer Science. Springer-Verlag, Oct. 2001.

[5] A. Carzaniga and A. L. Wolf. Forwarding in a
content-based network. In Proceedings of the
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication (SIGCOMM), Aug. 2003.

[6] Y. Ding, Y. Du, Y. Hu, Z. Liu, L. Wang, K. Ross, and
A. Ghose. Broadcast yourself: Understanding
YouTube uploaders. In Proceedings of the Internet
Measurement Conference, 2011.

[7] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In Proceedings of the 5th International
Conference on Emerging Networking Ezperiments and
Technologies (CoNEXT), 2009.

[8] P. Jokela, A. Zahemszky, C. Esteve Rothenberg,

S. Arianfar, and P. Nikander. LIPSIN: Line speed
publish/subscribe inter-networking. In Proceedings of
the Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication (SIGCOMM), Aug. 2009.

[9] H. Récke. Optimal hierarchical decompositions for
congestion minimization in networks. In Proceedings of
the 40th Annual ACM Symposium on Theory of
Computing (STOC), 2008.

[10] D. G. Thaler and M. Handley. On the aggregatability
of multicast forwarding state. In Proceedings of the
IEEE Conference on Computer Communications
(INFOCOM), Tel Aviv, Israel, Mar. 2000.

[11] R. Wetzker, C. Zimmermann, and C. Bauckhage.
Analyzing social bookmarking systems: A del.icio.us
cookbook. In Proceedings of the ECAI Workshop on
Mining Social Data, July 2008.

