
INFORM: a dynamic INterest FORwarding Mechanism for
Information Centric Networking

Raffaele Chiocchetti, Diego Perino,
Giovanna Carofiglio

Alcatel Lucent Bell Labs, Nozay, France
first.last@alcatel-lucent.com

Dario Rossi, Giuseppe Rossini
Telecom ParisTech, Paris, France

first.last@telecom-paristech.fr

ABSTRACT

Information Centric Networking is a new communication
paradigm where network primitives are based on named-
data rather than host identifiers. In ICN, data retrieval is
triggered by user requests which are forwarded towards a
copy of the desired content item. Data can be retrieved ei-
ther from a server that permanently provides a content item,
or from a temporary item copy opportunistically cached by
an in-network node. As the availability of cached items dy-
namically varies over time, the request forwarding scheme
should be adapted accordingly. In this paper we focus on dy-
namic request forwarding in ICN, and develop an approach,
inspired by Q-routing framework, that we show to outper-
form algorithms currently available in the state of the art.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network
communications, Packet-switching networks

General Terms

Algorithms, Design, Performance

Keywords

Information Centric Networking, Caching, Forwarding

1. INTRODUCTION
Recognizing that end users are often more interested in

obtaining content, rather than merely being provided with
connectivity among two addressable entities, a number of In-
formation Centric Network (ICN) architectures (overviewed
in [2]) have been proposed. While these proposals differ in a
number of aspects (e.g., the way content is named, content
resolution is addressed, etc.), they all provide name-based
network layer primitives. In addition to current Internet

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICN’13, August 12, 2013, Hong Kong, China.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2179-2/13/08 ...$15.00.

functionalities, as packet forwarding or routing, name-based
identifiers enable enhanced features which are natively sup-
ported by all proposals, as distributed in-network caching.
In ICN the data delivery process is typically pull-based,

i.e. triggered by user requests which are forwarded towards
a copy of the requested item. Request forwarding is driven
by forwarding engines (e.g. FIBs) that are populated with
reachability information about different content items. In
presence of such a highly distributed caching infrastructure,
item availability and location can vary over time because of
temporary replicas spread across the network. Replica dis-
tribution is determined by several factors, as content popu-
larity or caching policy, and the request forwarding scheme
should be adapted accordingly.
As also reflected in the ICN literature [4, 8–11], two co-

existing approaches can be exploited to adapt request for-
warding: (i) on a long term, control plane protocols [9, 10]
distribute item availability information across the network
to reach permanent or long term item replicas; (ii) on a short
term, data plane forwarding schemes [4,8,11] based on local
information available at every node allows to quickly react
to dynamic item availability.
This work adheres to the second family of approaches

[4, 8, 11], proposing to complement NDN with a dynamic
INterest FORwarding Mechanism. INFORM is an adaptive
hop-by-hop forwarding algorithm that discovers routes to-
wards temporary item replicas through exploration in the
data plane, that can be exploited later on for subsequent re-
quests for the same objects. This work yields several contri-
butions beyond [4,11], notably: (i) we propose a distributed
on-line request forwarding algorithm based on Q-routing,
whereas [4] limitedly addressed simple heuristics; (ii) our
solution is compared min-delay path forwarding [6] and the
strategy layer proposed by the NDN project [11].

2. ICN BACKGROUND
As above introduced, previous research on ICN request

forwarding progresses along two directions.
On the one hand, the definition of routing protocols in the

control plane [9, 10], for the dissemination of FIB informa-
tion addressing permanent and possibly temporary copies,
when stable over time. Concerning permanent copies, some
work focuses on the design of routing protocols support-
ing advertisement of name prefixes rather than IP address
ranges. Yet, work in this area is still at preliminary stage and
mostly limited to AS-level domain (e.g., OSPFn [9]), while
the corresponding name-oriented protocol for inter-domain
routing (e.g., BGPn) is still to appear. The addressing of

9

temporary replicas is realized in [10] through the encoding
of cache content in compact bloom filters, periodically ex-
changed among neighboring caches. However, the scalability
of such approach has not been assessed.

On the other hand, we have work focusing on data plane
forwarding strategies [4,8,11] for the retrieval of more volatile
temporary copies according to a predefined metric (e.g. the
closest). The benefits in this case are the possibility to (i)
efficiently locate temporary replicas without incurring the
overhead of explicitly signaling (ii) tune the forwarding ac-
cording to the instantaneous network state, which is simply
impossible in case of proactive routing approaches.
Our preliminary work [4,8] explored two cases where we ei-

ther (i) assume FIB knowledge about multiple paths in the
network leading toward permanent copies that can be di-
rectly exploited by the forwarding strategy [8]; or (ii) avoid
to require any FIB knowledge (but can use if available) and
rather perform a limited exploration of the network [4]. In
particular [4] testified the potential of using the first few
chunks of an object to explore the network in search for
local temporary copies. Lastly, [11] introduces a dynamic
approach in the NDN framework. Specifically, interfaces are
periodically probed, gathering statistics for each of them:
if, for a given content, an interface is estimated to be “bet-
ter” than the currently exploited one, the forwarding plane
switches to that interface.

While our proposal can be exploited by possibly several
ICN architectures, we focus on the CCN/NDN approach ini-
tially proposed in [6]. Let us briefly introduce it here, using
the CCN terminology, since a conceptual unifying frame-
work is currently missing.

CCN clients request Data in a pull-based fashion sending
Interests for named contents. Request are forwarded hop-
by-hop toward a permanent copy of the requested Data: for
each Interest, CCN nodes perform lookup for content names
in a Forwarding Information Base (FIB), that stores the
set of interfaces through which any given content can be
reached. As multiple paths are possibly stored for any given
name, a Strategy Layer is responsible for the selection of
one (or more) next hop interfaces among the set of possible
ones. CCN nodes along this path may possess cached copies
of the content of interest within their own Content Store: in
this case, Interests do not need to reach the permanent copy
stored at the repository, and the temporary copy in cache
is directly sent back to the client along the reverse path.
Indeed, Data travels back toward the requester following a
trail of bread-crumbs, that are stored in a Pending Interest
Table (PIT) at every network node.

3. HOP-BY-HOP DYNAMIC REQUEST FOR-

WARDING
In this section, we describe the design of INFORM, our

proposal for hop-by-hop dynamic request forwarding on the
data plane. The goal of INFORM is twofold: (i) to discover
paths to temporary copies of a content item, not addressed
in routing tables and (ii) to forward requests for such con-
tent item towards the ‘best’ performing interface (according
to a specified metric), while guaranteeing continuous Data
delivery and limiting the network overhead.

3.1 A Reinforcement Learning framework
Our proposal for on-line dynamic request forwarding lever-

ages previous work on reinforcement learning approaches to
routing and extend them to the case of a cache network op-
erating under CCN. Specifically, INFORM is inspired by the
Q-routing algorithm [3], implementing a distributed version
of Q-learning (cfr. [7] for a survey).
In the Q-routing algorithm each node builds its routing ta-

ble learning the delivery times towards other nodes. This is
achieved by means of a set of Q values stored by every node i
for all possible destinations d, Qi(d, v)∀v ∈ neighbours(i), d ∈

destinations, where Qi(d, v) represents the delivery time of
a packet from node i to node d if the packet is forwarded
via node v.

The forwarding action taken by node i consists in selecting
the interface to the neighboring node v towards a given desti-
nation d with the smallest Q value, Qi(d, v) (i.e. smallest de-
livery time). For every Data packet forwarded back through
the neighboring node v, node i receives in response the best
delivery time estimate of v, i.e. mink∈neigbours(v) Qv(d, k).
The associated Q value at i is then updated as follows,
Qi(d, v) = (1 − η)Qi(d, v) + η(mink∈neigbours(v) Qv(f, k) +
rtti,v), where rtti,v denotes the round trip delay between
nodes i and v.
The Q-routing approach has been shown effective to im-

prove performance with respect to basic shortest path for-
warding [3] in presence of dynamic network conditions, and
several improvements have been proposed to the original
design in order to apply it to various network contexts. IN-
FORM realizes distributed reinforcement learning at each
network node with reward information exchange via Data
piggyback.
INFORM is independently run by each node in the net-

work, and works at content item granularity, i.e. at the gran-
ularity of a file. For a given file f ∈ F a node i maintains
a set of Qi(f, v)∀v ∈ I(i) values, where I(i) denotes the
set of interfaces of node i1. Those values are computed and
updated during an exploration phase, where a node probes
the interfaces in order to learn the cost (reward) in terms
of residual delay to the first hitting cache for file f associ-
ated with each of them. As explained before, the Q values
update exploits the knowledge of the smallest Q value of
the neighbors chosen for forwarding a given Interest, which
is piggy-backed in the returning Data packet. Q values are
then used during an exploitation phase to identify the best
available interface where to forward Interest packets.
In the following, we detail the different phases of our al-

gorithm as well as the operations performed upon reception
of Interest and Data packets.

3.2 Exploration and exploitation phases
Figure 1 summarizes the transition among different phases

and the behavior of our algorithm in each phase. The al-
gorithm starts by initializing the set of Qi(f, v), ∀v ∈ I(i)
values, when an Interest for a given Data packet of file f is
received and corresponding Q values are not available.
A first exploration phase then starts. The goal of such ini-

tial exploration phase is to compute Q values for the different
interfaces, while guaranteeing the delivery of the requested

1Remark that Q values are associated to a given content
item but not to a single content download. Specifically, they
associated to Interest/Data packets belonging to multiple
(parallel or subsequent) downloads of the same content item.

10

Initialize Q(f,*)
values

After Nr Interest

Exploitation

Forward Interest to best

interface

Exploration

Forward Interest to a

Random interface and to

Best (or min delay path)

interface

After Nt Interest or

if (|Qmin(f)-Q(f,k)|)/Qmax(f) > δ
Remove Q(f,*)
values

If Q values are not

updated for Te

If Q values are not

updated for Te

Figure 1: Transition between phases

Data packets. To this end, a node randomly selects an inter-
face to forward an incoming Interest, and, at the same time,
it forwards the Interest over the shortest path (in terms of
delay) towards a permanent copy of the file.

Observation. Interest forwarding over shortest path is re-
quired as random interface selection alone does not guaran-
tee that the requested Data packet is delivered. Indeed, we
assume that an Interest contains a TTL value that is decre-
mented at every hop, and the Interest random walk in the
network may end without encountering any matching Data.
Only one random interface per Interest is chosen in order to
limit the overhead of this probing phase.

The exploration phase lasts Nr chunks, after which the
interface k providing the minimum delay is identified, i.e.
k : Q(f, k) = minv∈I(i) Q(f, v), and its Q value is stored,
i.e. Qmin(f) = Q(f, k).

After the exploration phase, the exploitation phase starts.
The goal of this phase is to exploit the information about
rewards associated with each interface collected during the
exploration phase. Thus, an Interest is forwarded over the
best interface k only; remark that the corresponding Q(f, k)
is the only one being updated during this phase. The algo-

rithm remains in exploitation phase until |Qmin(f)−Q(f,k)|
Qmin(f)

>

δ or forNt chunks at most. The first condition indicates that
system state has changed and Q values have then to be up-
dated. The second condition is also required as, despite the
Q value of the best interface is not significantly changed, the
state of the other interfaces may have changed.
After the exploitation phase, the algorithm returns in ex-

ploration. As previously mentioned this is required to deal
with dynamic item availability, and to update Q values ac-
cordingly. Differently form the first exploration phase, dur-
ing all the subsequent explorations an Interest is forwarded
towards a randomly selected interface, and, at the same
time, towards the previously determined best interface k

rather than shortest path interface. At the end of this ex-
ploration phase, the new interface k′ providing the minimum
delay is identified, i.e. k′ : Q(f, k′) = minv∈I(i)Q(f, v), the
minimum Q value is updated, i.e. Qmin(f) = Q(f, k′), and
the algorithm returns in exploitation phase.
Finally, Q values associated with a given file are deleted

when they are not updated for Te time units, i.e. no interests
for file f is forwarded by the node for Te time units.

if requested Data is present in the cache then
forward Data packet through j with Qmin(f);

else
if request is present in the PIT then

add interface j to list of requesting interfaces;
else

create a new entry in the PIT;
if Exploration phase then

i=select random interface;
if First exploration then

k=select shortest path interface;
else

k=select best interface
k : Q(f, k) = minv∈I(i)Q(f, v);

end
forward Interest through i, k;

else
k=select best interface
k : Q(f, k) = minv∈I(i)Q(f, v);
forward Interest through k;

end

end

end

Algorithm 1: Operations upon the reception of an In-
terest packet from interface j.

3.3 Interest and Data packet
Algorithm 1 details the operations performed by our algo-

rithm upon reception of an Interest packet. If the requested
Data packet is present in cache, then it is send over the in-
terface that requested it. The minimum value Qmin(f) is
also added to the Data packet, as it will be used by down-
stream nodes to update their Q values. Otherwise if the
request is not present in the PIT and the algorithm is in
exploration phase, the Interest is forwarded over a random
interface, and over the best interface (or over the interface
towards the shortest path in terms of delay in case of first ex-
ploration). Finally, if the algorithm is in exploitation phase,
the Interest packet is forwarded towards the best interface
k only.

Algorithm 2 details the operations performed by our al-
gorithm upon reception of a Data packet. After storing the
Data packet in the cache, the Q value associated with the
incoming interface of the considered file are updated. Fi-
nally, the list of requesting interfaces is looked up from the
PIT, the Data packet is forwarded towards the interested
interfaces and the PIT entry is removed.

cache.store(data);
Qi(d, f).update(

(1− η)Qi(d, f) + η(mink∈I(y)Qy(f, k) + rtti,y));
foreach interface ∈ PIT.entry[data] do

data.insert (Qmin(f)); //Q-value piggybacking ;
data.forward(interface);

end
erase (PIT.entry);

Algorithm 2: Operations upon the reception of a Data
packet on interface j from neighbor y.

11

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800 900 1000

Q
1
(f

,i
)

Time - [sec]

Cached by 8

Removed by 8

Cached by 2

Removed by 2

Cached by 11

Cached by 10

Q1(f,0)
Q1(f,1)
Q1(f,2)

(b)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900 1000

D
o
w

n
lo

ad
 T

im
e

-
 [

m
s]

Time - [sec]

Cached by 8

Removed by 8

Cached by 2

Removed by 2

Cached by 11

Cached by 10

MinDelay
NDN

INFORM

(c)

Figure 2: Toy case scenario: (a) Network topology with link delays [ms]. (b) Q1(·, ·)-values evolution over the
time.(b) Data packet download time evolution over time.

3.4 Toy case example
For a better understanding of our algorithm we now present

a toy case scenario. We consider the simple network topol-
ogy reported in Fig. 2(a), and we assume there is only one
client connected to node 1, and one server connected to node
0 . We consider a single content item composed of 100 Data
packets that is repeatedly requested by the client and perma-
nently stored by the server. We assume there are no caches
in the network, and we dynamically place the content item
across different nodes. The dynamic placement pattern is
showed in Figg. 2(b)-2(c), where we report node 1 Q val-
ues and the Data packet delivery time evolution over time
respectively.

First, we observe our algorithm is able to detect and react
to dynamic item availability. Indeed, when content place-
ment is modified, Q values associated with different inter-
faces are updated and the download time evolves conse-
quently. Second, we notice the correctness of computed Q
values after convergence. Indeed, converged Q values are
equal to the minimum delays between node 1 and the closest
item replica in terms of delay via a given interface. Third,
the interface over which Interest packets are forwarded dur-
ing the exploration phase, always corresponds to the optimal
one under the given content item placement and network
delay. As the choice of the parameters is critical for the
performance of INFORM, we consider this issue in the next
Section.

Finally, Fig. 2(c) shows INFORM outperforms min-delay
path forwarding as it can discover off-path temporary con-
tent replicas when available, i.e. between 100 and 300s and
400 and 600s. NDN forwarding schemes [11] can also dis-
cover the temporary replica available at node 8 between 100
and 300s with a slightly longer convergence time than IN-
FORM. Differently, the temporary replica at node 2 avail-
able between 400 and 600s is discovered but is not exploited
to download all chunks, i.e. some packets are downloaded
from node 2 while other from the server. In Sec. 4 we deeply
compare the performance of the three algorithms under dif-
ferent simulation settings.

4. EVALUATION
We evaluate the performance of INFORM by means of

packet-level simulations. For our analysis we extend the
ccnSim simulator [1] to support INFORM, and the dynamic
forwarding policy proposed by the NDN project [11].

We model the network topology as an Erdos-Renyi graph
G(n, ρ), where n is the number of nodes and ρ is the prob-
ability that a link connecting two nodes does exist. We
assume b among the n nodes are border routers where users
are connected to, and s ≤ n content servers are connected to
distinct nodes of the network. We further assume every node
is equipped with a cache of size c% of the content catalog
and implements the Least Recently Used (LRU) replacement
policy. Unless otherwise specified we assume n = 22, b = 8,
s = 1, ρ = 0.3 , and c = 15%.
The placement of border routers and servers are randomly

generated, results are averaged over multiple simulation runs,
and we do not consider the cache warm up period. Users
generate content requests according to a Poisson process
of intensity λ = 1 req/s per border router. The motiva-
tion behind the Poisson assumption comes from the obser-
vation that Internet traffic is well modeled at session level
by a Poisson process [5].We consider a catalog of 105 content
items whose popularity is Zipf distributed with α = 1. We
assume each content item is composed of 100 independent
Data packets that are permanently stored at servers s. Fi-
nally, we populate nodes’ FIB with next hop information for
the min-delay path towards one of the permanent content
item copy.

4.1 Parameter tuning
In this section, we investigate the impact of INFORM

parameters on its performance. We expect convergence time
and stability to be primarily affected by the learning rate η,
which determines the speed at which INFORM adjusts the
forwarding policy to dynamic item availability. Similarly,
accuracy of the best interface estimation is primarily affected
by the duration of the exploration phase Nr. Results in the
following are averaged over multiple nodes and simulation
runs.

Fig. 3(a) shows the convergence time of INFORM Q val-
ues as a function of the learning rate for three objects having
different popularity. On the one hand, we observe that con-
vergence time decreases as the learning rate increases and
is independent from file popularity. This stems from the
fact that the weight of the last delay estimation increases
with the learning rate, resulting in a faster adaptation of
the forwarding policy to item availability.
On the other hand, a high learning rate leads also to unde-

sirable oscillations in delay estimations. Fig. 3(b) shows the
standard deviation of Q values after convergence increases

12

 30
 40
 50
 60
 70
 80
 90

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

n
v

er
g

en
ce

 t
im

e-
[c

h
u

n
k

s]

Learning rate - η

Most popular objects
Average popular objects

Least popular objects

(a)

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
td

.
d

ev
ia

ti
o

n
 -

 σ
(Q

)

Learning rate - η

x10
-2

(b)

Figure 3: Parameter tuning. Convergence time as a
function of the learning rate (a); Q value standard
deviation as a function of the learning rate (b).

with the learning rate and is independent from file popu-
larity. As standard deviation captures the stability of delay
estimations, we observe INFORM stability decreases as the
learning rate increases. Nevertheless, the maximum stan-
dard deviation is 2%, that we argue to have a limited effect
on the interface selection process.

4.2 Performance comparison
We now evaluate the performance of INFORM and com-

pare it with simple min-delay path forwarding and the dy-
namic forwarding scheme proposed by the NDN project [11].
We consider three main metrics: i) the Data packet delivery
time, which represents the time elapsing between a client ex-
pression of a Interest for a given packet, and the reception
of the corresponding Data packet; ii) the Data load, defined
as the average number of Data packets flowing through the
network in one time unit; iii) the Interest load, defined as
the average number of Interest packets flowing through the
network in one time unit. The first metric allows us to quan-
tify the performance as perceived by the end-users, while the
second and third metrics quantify the network traffic cost.

We set the learning rate to η = 0.7, the duration of the
exploration phase to Nr = 50 chunks, and the duration of
the exploitation phase to Nr = 100 chunks. For the NDN
forwarding algorithm parameters, we performed several sim-
ulations with different settings, and we present the best ob-
tained results.

Fig. 4(a) reports the average Data packet delivery time
as a function of the network connectivity (i.e., probabil-
ity ρ that any two nodes are connected), which determines
the number of available paths between clients and servers.
Clearly, delivery time decreases as the network connectivity
increases: as the number of links in the network increases,
the distance between clients and servers is reduced, with a
consequence decrease in the delivery time.
We also observe INFORM provides the smallest delivery

time among the three algorithms for all connectivity values.
Specifically, it provides a performance improvement between
18-33% with respect to simple min-delay path forwarding,

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0.1 0.2 0.3 0.4 0.5D
o

w
n

lo
ad

 t
im

e
-

[m
s]

Connectivity Probability - ρ

MinDelay
NDN

INFORM

(a) Cache size 15% of the catalog.

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1 5 10 15 20 25

D
o

w
n

lo
a
d

 t
im

e
 -

 [
m

s]

Relative Cache Size - %

(b) ρ = 0.3

Figure 4: Mean Download time as a function of the
network connectivity (a) and cache size (b).

and between 10-33% with respect to the NDN forwarding
strategy. The performance gap increases with the connectiv-
ity, testifying that INFORM can better exploit an increasing
number of paths.
Fig. 4(b) shows the average Data packet delivery time as

function of the cache size. We observe the delivery time
sharply decreases as the cache size increases until additional
storage does not provide any additional benefits. We also
observe INFORM outperforms other algorithms for all cache
sizes providing an improvement of 22-25% with respect to
the NDN forwarding strategy and 5-26% with respect to
min-delay path forwarding.
Figg. 5(a)-(b) report the Data load as a function of the

network connectivity and cache size respectively. INFORM
generates less Data packets than the NDN forwarding scheme,
but clearly more than min-delay path forwarding.

 0

 1000

 2000

 3000

 4000

 5000

 0.1 0.2 0.3 0.4 0.5

D
at

a
L

o
ad

Connectivity Probability - ρ

MinDelay
NDN

INFORM

(a) Cache size 15% of the catalog.

 0

 2000

 4000

 6000

 8000

 1 5 10 15 20 25

D
a
ta

 L
o

a
d

Relative Cache Size - %

(b) ρ = 0.3

Figure 5: Data load as function of the network con-
nectivity (a) and cache size (b).

13

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.1 0.2 0.3 0.4 0.5

In
te

re
st

 L
o

ad

Connectivity probability - ρ

MinDelay
NDN

INFORM

(a) Cache size 15% of the catalog.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 1 5 10 15 20 25

In
te

re
st

 L
o

ad

Cache Size - %

MinDelay
NDN

INFORM

(b) ρ = 0.3

Figure 6: Interest load as function of the network
connectivity (a) and cache size (b).

As the network connectivity or cache size increases the
Data load decreases for min-delay path forwarding. Differ-
ently, for INFORM and NDN, the Data load first increases
and then decreases as the connectivity and cache size in-
crease. Additional links in the network or storage capac-
ity increase the availability of temporary item replicas that
are discovered by such algorithms: it follows requests are
forwarded through longer paths to reach those replicas re-
sulting in a higher Data Load. After a certain threshold,
the load decreases as more links or additional storage ca-
pacity do not increase item availability but only shorten the
distance between clients and item copies thus reducing the
load on the network.

We observe a similar trend in Figg. 6(a)-(b,) where the
Interest load as a function of the network connectivity and
cache size is reported. The Interest Load has a less signifi-
cant impact on the global network traffic than Data Load, as
Interest packets are much smaller in size than Data packets.
Nevertheless, the amount of Interest packet may have a sig-
nificant impact on processing and memory cost at network
routers. Indeed, Interests require routers to perform lookup
operations and generate additional state to be stored.

5. CONCLUSION
In this paper, we have presented INFORM a dynamic

INterest FORwarding Mechanism for ICN. INFORM is de-
signed to discover temporary copies of content items not
addressed in routing tables and to forward requests over
b̀est’ performing interface at every hop. We have shown
INFORM is able to detect and react to dynamic item avail-
ability, and to forward requests towards the b̀est’ available

copy. By means of simulations we have shown INFORM
outperforms simple min-delay forwarding, and state of the
art NDN dynamic forwarding scheme. Our current and fu-
ture work include an analytical modeling of INFORM, and
a practical system design to enable Interest forwarding with
INFORM at high speed.

Acknowledgements

This work presented in this paper has been partially carried
out at LINCS (http://www.lincs.fr), and partially funded
by the French national research agency (ANR), CONNECT
project, under grant number ANR-10-VERS-001.

6. REFERENCES

[1] ccnsim homepage.
http://www.telecom-paristech.fr/~drossi/ccnSim.

[2] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher,
and B. Ohlman. A survey of information-centric
networking. IEEE Communications Magazine,
50(7):26 –36, 2012.

[3] J. A. Boyan and M. L. Littman. Packet routing in
dynamically changing networks: A reinforcement
learning approach. In Advances in Neural Information
Processing Systems 6, pages 671–678. Morgan
Kaufmann, 1994.

[4] R. Chiocchetti, D. Rossi, G. Rossini, G. Carofiglio,
and D. Perino. Exploit the known or explore the
unknown?: hamlet-like doubts in icn. In ACM
SIGCOMM ICN, 2012.

[5] Edward Chlebus and Jordy Brazier. Nonstationary
poisson modeling of web browsing session arrivals.
Information Processing Letters, 102(5):187 – 190,
2007.

[6] V. Jacobson, D. Smetters, J. Thornton, M. F. Plass,
N. Briggs, and R. Braynard. Networking named
content. In ACM CoNEXT, 2009.

[7] Littman M. Moore A.W. Pack Kaelbling, L.
Reinforcement learning: a survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

[8] G. Rossini and D. Rossi. Evaluating ccn multi-path
interest forwarding strategies. Computer
Communications, 2013.

[9] L. Wang, A. K. M. Hoque, Cheng Yi, A. Alyyan, and
B. Zhang. OSPFN: An OSPF based routing protocol
for named data networking. Technical report, March
2012.

[10] Y. Wang and K. Lee. Advertising cached contents in
the control plane: Necessity and feasibility. In IEEE
INFOCOM, NOMEN Workshop, 2012.

[11] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang,
B. Zhang, and L. Zhang. A case for stateful
forwarding plane. Computer Communications, 2013.

14

