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ABSTRACT

Datacenter networking is currently dominated by two major
trends. One aims toward lossless, flat layer-2 fabrics based
on Converged Enhanced Ethernet or InfiniBand, with ben-
efits in efficiency and performance. The other targets flexi-
bility based on Software Defined Networking, which enables
Overlay Virtual Networking. Although clearly complemen-
tary, these trends also exhibit some conflicts: In contrast to
physical fabrics, which avoid packet drops by means of flow
control, practically all current virtual networks are lossy. We
quantify these losses for several common combinations of hy-
pervisors and virtual switches, and show their detrimental
effect on application performance. Moreover, we propose a
zero-loss Overlay Virtual Network (zOVN) designed to re-
duce the query and flow completion time of latency-sensitive
datacenter applications. We describe its architecture and
detail the design of its key component, the zVALE lossless
virtual switch. As proof of concept, we implemented a zOVN
prototype and benchmark it with Partition-Aggregate in two
testbeds, achieving an up to 15-fold reduction of the mean
completion time with three widespread TCP versions. For
larger-scale validation and deeper introspection into zOVN;,
we developed an OMNeT++ model for accurate cross-layer
simulations of a virtualized datacenter, which confirm the
validity of our results.
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1. INTRODUCTION

In recent years, profound changes have occurred in data-
center networking that are likely to impact the performance
of latency-sensitive workloads, collectively referred to as on-
line and data-intensive [38]. Particularly relevant are the
rise of Overlay Virtual Networking (OVN) — remarkable ap-
plication of Software-Defined Networking (SDN) — and, si-
multaneously, the shift to lossless layer-2 fabrics based on
Converged Enhanced Ethernet (CEE) or InfiniBand. So
far, the trends in virtualization and the commoditization of
high-performance-computing-like lossless® fabrics have been
decoupled, each making independent inroads into the data-
center.

While the research community increasingly focuses on the
performance of horizontally-distributed data-intensive appli-
cations [15, 8, 9, 25, 38, 41, 42], and recently also on vir-
tualization overlays for multitenant datacenters [28, 40, 17],
we argue that the combination of virtualization and such
workloads merits closer scrutiny [13]. Our main objective
is to analyze the impact of the absence versus presence of
flow control on workload performance in a virtualized net-
work. As our study specifically focuses on latency-sensitive,
data-intensive workloads, the performance metric of inter-
est is flow completion time (FCT) [20]. As a representative
workload model, we selected Partition-Aggregate [8, 41].

1.1 Network Virtualization

As server virtualization allows dynamic and automatic
creation, deletion, and migration of virtual machines (VMs),
the datacenter network must support these functions with-
out imposing restrictions, such as IP subnet and state re-
quirements. In addition to VM mobility and ease of man-
agement, complete traffic isolation is desirable for improved
security, which can be achieved by layer-2 and -3 virtualiza-
tion. Rather than treating the virtual network as a dumb
extension of the physical network, these requirements can
be effectively met by creating SDN-based overlays such as
VXLAN [26] and DOVE [17]. An exemplary architectural
exposition of modern virtual overlays is NetLord [28], which
covers the key motivations and design principles.

SDN as a concept decouples the control and data planes,
introducing programmability and presenting applications with

'In this paper we use lossless and zero-loss in the sense of
avoiding packet drops due to congestion. Packets might still
be discarded because of CRC errors in the physical links.
These, however, are extremely rare events under normal con-
ditions (typical bit error rates are 1072 or less) and recov-
ered by TCP.



an abstraction of the underlying physical network. Scalable
and flexible “soft” networks can thus be designed to adapt
to changing workloads and to datacenter tenants and op-
erators needs. In a nutshell, SDN trades some degree of
performance to simplify network control and management,
to automate virtualization services, and to provide a plat-
form upon which new network functionalities can be built.
In doing so, it leverages both the OpenFlow [27, 29] and the
IETF network virtualization overlay [37, 26] standards.

Based on the adoption rate of virtualization in datacen-
ters, the underlying assumption is that virtual networks
(VN) will be deployed in practically most, if not all, multi-
tenant datacenters, providing a fully virtualized Cloud plat-
form by default. For the remainder of this paper, we pre-
sume that VN overlay is an intrinsic part of the extended
datacenter network infrastructure. Thus we envision a fully
virtualized datacenter in which “bare-metal” workloads be-
come the exception, even for mission-critical applications.

However, current hypervisors, virtual switches (vSwitches)
and virtual network interface cards (vNICs) critically dif-
fer from their modern physical counterparts. In fact, they
have a propensity to liberally drop packets even under minor
congestive transients. These losses can be considerable and
non-deterministic, as will be presented in Section 2.3. Con-
sequently, current non-flow-controlled virtual networks will
significantly cancel out the investments of upgrading dat-
acenter networks with flow-controlled CEE and InfiniBand
fabrics. We argue that this lossy legacy unnecessarily hin-
ders both the application performance and the progress of
future datacenters.

1.2 Lossless Fabrics

The recent standardization of 802 Data Center Bridging
for 10-100 Gbps CEE triggered the commoditization of high-
performance lossless fabrics. First generation 10G products
are already on the market, and CEE fabrics at 40G, or even
100G, have been announced by several vendors.

Traditionally, Ethernet did not guarantee losslessness: pa-
ckets were dropped whenever a buffer reached its maximum
capacity. This behavior does not match the modern seman-
tics of datacenter applications, including High-Performance
Computing (HPC) environments [19], storage (Fibre Chan-
nel over Ethernet [5]), or Remote Direct Memory Access
(RDMA) over Ethernet [16].

CEE upgrades Ethernet with two new mechanisms of in-
terest here: A link-level flow control, i.e., Priority Flow Con-
trol (PFC) [6], and an end-to-end congestion management
known as Quantized Congestion Notification (QCN). PFC
divides the controlled traffic into eight priority classes based
on the 802.1p Class of Service field. Within each priority
PFC acts as the prior 802.3x PAUSE, except that a paused
priority will not affect the others. Hence, a 10-100G link is
not fully stopped whenever a particularly aggressive flow ex-
ceeds its allotted buffer share. Despite the marked improve-
ment over the original PAUSE, a side-effect of PFC still re-
mains the potential global throughput collapse, which differs
from the lossy case. The buffer of a flow-controlled blocked
receiver may recursively block buffers upstream, spreading
the initial congestion into a saturation tree [30]. To address
these head-of-line blocking issues, QCN was defined and ex-
tensively simulated prior to releasing PFC.
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Figure 1: Experimental setup for virtual network
loss measurements.

1.3 Contributions

Our main contributions are as follows. (i) We identify
and characterize the problem of packet drops in virtual net-
works. (ii) We implement the first zero-loss Overlay Virtual
Network (zOVN) to address the lossless assumption of con-
verged multitenant datacenters. (iii) We quantitatively ver-
ify how zOVN improves the standard TCP performance for
data-intensive applications. Testing Partition-Aggregate on
top of zZOVN, we achieved up to 15-fold reductions in flow
completion times using two distinct testbeds with 1G and
10G Ethernet respectively, and three standard TCPs. Fi-
nally, (iv) we investigate the scalability of zZOVN by means
of accurate full system cross-layer simulations.

The remainder of the paper is structured as follows. In
Section 2 we present the main issues of current virtual net-
works. In Section 3 we explore the design space of virtual
overlays. We provide the details of our zZOVN prototype in
Section 4 and present its evaluation in Section 5. We discuss
the results in Section 6 and the related work in Section 7.
We conclude in Section 8.

2. VIRTUAL NETWORKS CHALLENGES

The two deficiencies of current virtual networks are la-
tency penalties and excessive packet dropping.

2.1 Latency

A virtual link does not present a well-defined channel
capacity. Neither arrivals nor departures can be strictly
bounded. The virtual link service time remains a stochas-
tic process depending on the processor design, kernel inter-
rupts, and process scheduling. This negatively affects jitter,
burstiness, and quality-of-service. Hence, virtual networks
without dedicated real-time CPU support remain a hard net-
working problem. In addition, virtual networks introduce
new protocols spanning layer-2 to 4 and touch every flow
or, in extreme cases, even every packet [28, 17]. The result
is a heavier stack, with encapsulation-induced delays and
overheads possibly leading to fragmentation and inefficient
offload processing.

However, the more critical performance aspect is the im-
pact on latency-sensitive datacenter applications. Latency
and flow-completion time have been recently established as
crucial for horizontally-distributed workloads such as Parti-
tion - Aggregate, typically classified as soft real-time. The
200ms end-user deadline [8, 41, 24] translates into constraints
of few 10s of milliseconds for the lower-level workers. Al-
though the additional VN-induced delay may be negligible in
a basic ping test [28], its impact on more realistic Partition-
Aggregate workloads can lead to an increase in the mean
flow completion time of up to 82% [13]. This raises concerns
about potentially unacceptable VN performance degrada-
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Figure 2: Causes of packet losses. Configurations

C1-CT7 defined in Table 1.

tions for such critical latency-sensitive applications in a vir-
tualized multitenant environment.

2.2 Losslessness

Ideally a VN should preserve the lossless abstraction as-
sumed by converged datacenter applications such as Fibre
Channel over Ethernet [5], RDMA over Ethernet [16] or
HPC environments [19]. Yet currently all the commercial
and open-source VNs that we have tested are lossy. As
losslessness is a critical qualitative feature for the future of
converged datacenter networking, CEE spared no effort to
ensure zero-loss operation by using two complementary flow
and congestion control protocols, namely, PFC and QCN.
The same holds for InfiniBand, with its link level credit-
based flow control and its FECN/BECN-based end-to-end
Congestion Control Annex. In comparison, despite the pos-
sibility of relatively simpler and lower-cost flow control im-
plementations, current VN still resort to packet drop during
congestion. This not only degrades datacenter performance,
but also fails to correctly terminate modern flow-controlled
fabrics, canceling out the investments in a lossless physical
network. As an alternative, we demonstrate how a zero-loss
Overlay Virtual Network (zOVN) can meet both the desired
losslessness and the performance requirements.

2.3 Loss measurements

To support the above claims, we assess the extent of packet
drops using commonly available virtualization solutions. We
perform the experiment shown in Figure 1 in which VM1
and VM2 act as sources and send their traffic towards VM3,
which acts as sink, creating a common congestion scenario.
We evaluate (i) where and how frequently losses occur, and
(ii) the maximum bandwidth that a virtual switch can sus-
tain without dropping packets.

We considered the combinations of hypervisors, vNICs,
and virtual switches shown in Table 1. Qemu/KVM is an
open-source hypervisor, whereas H2 is a commercial x86 hy-
pervisor. They were used with two types of vNICs: vir-
tio [34] and N2 are virtualization optimized vNICs designed
for Qemu and H2, respectively, whereas e1000 fully emu-
lates the common Intel? e1000 adapter. In combination with
Qemu, we used three virtual switches: Linux Bridge [2],
Open vSwitch [3] and VALE [33]. The first two are stable
products used in various production deployments whereas
VALE is currently a prototype. The combination Qemu-
e1000-VALE was omitted as it was affected by an imple-
mentation bug that allows internal queues to grow indefi-
nitely, resulting in substantially diverging results between
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|| Hypervisor | vNIC | vSwitch

C1 Qemu/KVM | virtio Linux Bridge
Cc2 Qemu/KVM | virtio | Open vSwitch
Cc3 Qemu/KVM | virtio VALE

cy H2 N2 S4

C5 H2 e1000 S4

C6 Qemu/KVM | e1000 Linux Bridge
Cc7 Qemu/KVM | e1000 | Open vSwitch

Table 1: Configurations for loss measurements.

runs. With H2 we used its own internal virtual switch S4.
All configurations have been tested on a Lenovo T60p Lap-
top (part of Testbed 1 detailed in Figure 9). Across all
experiments, iperf [1] injects 1514B frames of UDP traffic.
We determine the losses and bandwidths using the six mea-
surement points shown in Figure 1: (1) and (6) are inside
the application itself, (2) and (5) are on the TX and RX side
of each vNIC, whereas (3) and (4) are at the virtual switch
ports.

Experiment 1: Both generators injected traffic at full
speed for 10s, with the last packet being marked. We com-
puted the number of lost packets as the difference between
the number of packets transmitted and received at the other
end. We investigate (i) vSwitch losses, i.e., packets received
by the vSwitch input ports (3) and never forwarded to the
vSwitch output port (4), and (ii) receive stack losses, i.e.,
packets received by the destination vNIC (5) and never for-
warded to the sink (6). The TX path is backpressured up
to the vSwitch, hence no losses were observed between other
measurement points. A more accurate analysis of the pos-
sible loss points is presented in Section 4. With VALE and
S4, we could not access the points (3) and (4). Hereby the
difference between the sender vNIC and the receiver vNIC
counters (points (2) and (5), respectively) was accounted as
virtual switch losses. The results are plotted in Figure 2.

Depending on configuration, the total traffic forwarded
during the 10s window varied widely. In virtualized net-
works performance is bounded by the computational re-
sources assigned to each block by the host operating system.
Compute-intensive configurations score lower throughputs,
inducing less losses in the vSwitch. An example is given by
the e1000-based configurations that emulate a fake hardware
to “deceive” the guest driver. The virtualization-optimized
vNICs — i.e., virtio and N2 — achieved higher rates, thus
causing overflows in the virtual switch. The performance
optimized VALE switch shifted the bottleneck further along
the path, into the destination VM stack. All these results
are evidence of the lack of flow control between the virtual
network devices, and confirm our initial conjecture.

Experiment 2: To analyze the maximum sustainable
bandwidth for the virtual switches, we varied the target
injection rate at each generator in increments of 5 Mb/s,
starting from 5 Mb/s. The aggregated virtual switch input
traffic is the sum, i.e., twice the injection rate. Figure 3a and
Figure 3b plot, respectively, the RX rate and loss ratio as
a function of the total injection rate. Both were calculated
at application level (points (1) and (6)). All configurations
exhibit saturation behaviors. The RX rate first increases
linearly with the TX rate, up to a saturation peak. Beyond
this, with the exception of C4, we observe a drop indicating
a lossy congestive collapse, rather than the desired steady
saturation plateau. The overloaded system wastes resources
to generate more packets, instead of dedicating sufficient re-
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Figure 3: Experimental loss results. The losses are measured between points 1 and 6 from Figure 1.

sources to the virtual switch and destination VM to actually
forward and consume the packets. Although the saturation
point varied considerably across configurations, loss rates
well in excess of 50% were observed for all configurations
(Figure 3b). Even far below the saturation load, marked
by vertical lines, we measured losses in the virtual network
(Figure 3c) that were significantly above the loss rates ex-
pected in its physical counterpart, i.e., up to 10~2 instead
of 1078 for MTU-sized frames with a typical bit-error rate
of 10712

The “noise” in Figure 3c confirms our intuitive hypothe-
sis about large non-causal performance variability in virtual
networks. In fact, the service rate of each virtual link de-
pends critically on the CPU, load, process scheduling, and
the computational intensity of the virtual network code.
Suboptimal and load oblivious scheduling causes frequent
losses, e.g., by scheduling a sender prior to a backlogged re-
ceiver. Lossless virtual switches would be of great interest,
not only in terms of efficiency but also for performance pre-
dictability. The next sections will present how flow control
can be implemented in virtualized datacenter networks.

3. ZOVN DESIGN

In this section we outline the core principles that guided
the design of our lossless virtual network.

3.1 Objectives

A converged virtualized network infrastructure must si-
multaneously satisfy the requirements from the domains be-
ing converged. As mentioned above, losslessness is a func-
tional requirement of various HPC, storage and IO applica-
tions, whereas on-line data-intensive workloads impose per-
formance requirements of 200 ms user-level response times.

We base our lossless virtual datacenter stack on CEE-
compatible flow control. Transport-wise, we anchor zOVN’s
design on the established TCP stack combined with lossless
overlays as proposed here. Our objectives are :

1) Reconcile the flow completion time application perfor-
mance with datacenter efficiency and ease of management.
This proves that network virtualization and horizontally-
distributed latency-sensitive applications are not mutually
exclusive. This may remove an obstacle for virtual network
deployment in performance-oriented datacenters.

2) Prove that commodity solutions can be adapted for siz-
able performance gains. As shown in Section 5, a 15-fold flow
completion time reduction is also attainable without a clean-
slate deconstruction of the existing fabrics and stacks. One
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can achieve comparable performance gains with CEE fab-
rics and standard TCP stacks. Considering the total costs
of ownership, this evolutionary reconstruction approach is
likely to outperform other, possibly technically superior, al-
ternatives in terms of cost/performance ratios.

3) Expose packet loss as a costly and avertable singu-
larity for modern datacenters, and, conversely, losslessness
as a key enabler in multitenant datacenters for both (i) the
query and flow completion time performance of horizontally-
distributed latency-sensitive workloads, and (ii) the conver-
gence of loss-sensitive storage and HPC applications. This
basic HPC principle has already been proved by decades of
experiences in large-scale deployments. As faster InfiniBand
and CEE fabrics are widely available at decreasing prices,
datacenters could also now benefit from prior HPC invest-
ments in lossless networks.

4) Design and implement a proof-of-concept zero-loss vir-
tual network prototype to experimentally validate the above
design principles in a controllable hardware and software en-
vironment.

5) Finally, extend and validate at scale the experimental
prototype with a detailed cross-layer simulation model.

3.2 End-to-end Argument

The wide availability of lossless fabrics and the thrust of
SDN/OpenFlow have prompted us to reconsider the end-
to-end and “dumb network” arguments in the context of
datacenters. The end-to-end principle [35] can be traced
back to the inception of packet networks [12]. Briefly stated,
application-specific functions are better implemented in the
end nodes than in the intermediate nodes: for example, error
detection and correction should reside in NICs and operat-
ing system stacks and not in switches and routers. While
one of the most enduring design principles, this can also re-
strict the system level performance in end-to-end delay, flow
completion time and throughput [14].

In datacenters, the delay of latency-sensitive flows is im-
pacted not only by network congestion, but also by the
end-node protocol stacks [32]. Historically, for low-latency
communications, both Arpanet and Internet adopted “raw”
transports—unreliable, yet light and fast—instead of TCP-
like stacks. Similarly, InfiniBand employs an Unreliable
Datagram protocol for faster and more scalable “light” com-
munications. Also HPC protocols have traditionally used
low-latency end-node stacks based on the assumption of a
lossless network with very low bit-error rates. Given the
increasing relevance of latency-sensitive datacenter applica-



tions, current solutions [8, 9, 41, 38] adopted an intriguing
option: decouple flow control from the fabric. Here we show
that coupling flow control with the fabric positively impacts
the workload performance.

3.3 Overlay Virtual Network Design Space

The simplest virtual network would start with a large flat
layer-2 network for each tenant. However, this approach
does not scale within the practical constraints of current
datacenter network technologies. The increasing number of
VMs has led to a MAC address explosion, whereby switches
need increasingly larger forwarding tables. Also, dynamic
VM management stresses the broadcast domains [28]. More-
over, today’s limit of 4K Ethernet VLANS is insufficient for
multitenant datacenters unless Q-in-Q/MAC-in-MAC en-
capsulation is used. Finally, the datacenter network must
support dynamic and automatic provisioning and migration
of VMs and virtual disks without layer-2 or -3 addressing
constraints. The emerging solution to full network virtual-
ization are the overlay virtual networks. A number of over-
lays have recently been proposed [21, 37, 26, 28, 11, 17].
Their key architectural abstraction lies in the separation
of virtual networking from the underlying physical infras-
tructure. Overlays enable an arbitrary deployment of VMs
within a datacenter, independent of the underlying layout
and configuration of the physical network, without chang-
ing or reconfiguring the existing hardware.

Current overlays are predominantly built using layer-2 to
-4 encapsulation in UDP, whereby the virtual switches in-
tercept the VM traffic, perform the en-/de-capsulation, and
tunnel the traffic over the physical network. Each VM has
an associated network state residing in the adjacent switch.
Upon VM migration, the virtual switches update their for-
warding tables to reflect the new location. Using encapsu-
lation over IP [28, 26, 11, 17], the VM locations are neither
limited by the layer-2 broadcast domains, nor by VLAN ex-
haustion. Instead, full IP functionality is preserved, includ-
ing QoS and load balancing. Furthermore overlays are in-
dependent of location, domains and the physical networking
capabilities. Thus these virtual switches are similar to tra-
ditional hypervisor switches, but now with additional func-
tionality as overlay nodes. Inherently an overlay network
trades some of the bare-metal performance for manageabil-
ity, flexibility and security.

Performance-wise, such overlays influence datacenter’s ef-
ficiency and scalability. First, on the data plane: they
use encapsulation to build tunnels between virtual switches.
Current encapsulation solutions, such as VXLAN [26] and
NVGRE [37], solve the original VLAN limitation while re-
ducing the configuration and management overhead. Sec-
ond, on the management plane: configuration, distribution,
and learning protocols are necessary to create tunnels at
each virtual switch. To create a tunnel, the overlay switch
must map the destination address to its physical location
using either the learning or the centralized approach. The
learning approach, used by VXLAN [26], floods packets with
unknown destinations. The centralized approach relies on
the virtual switches to retrieve the information required for
encapsulation. In NetLord [28], this information is learnt
by the switches as they communicate with each other and
from a central configuration repository. In DOVE [11, 17],
this configuration information is retrieved from a central-
ized database. Both the central configuration repository
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in NetLord and the centralized database in DOVE must
be highly available and persistent. This poses a challenge
for multi-million node datacenters, thus indicating a future
third option of a distributed repository approach, presuming
the entailing coherency issues can be solved efficiently. For
now, the learning and centralized approaches are simpler to
design and manage. Notably, the centralized method also in-
herently prevents flooding, the main drawback of the learn-
ing approach. For zOVN we have adopted and extended
DOVE’s centralized approach with a custom encapsulation
header.

4. ZOVN IMPLEMENTATION

In this section we describe the details of the implementa-
tion of our proposed lossless overlay network (zOVN). We
assume a collection of virtualized servers, each running a set
of virtual machines. The servers are interconnected through
a flat layer-2 fabric (an example is shown in Figure 4). The
physical network has per-priority flow control, allowing the
network administrator to configure one or more priorities as
lossless. The physical per-priority flow control is extended
into the virtual domain by our proposed zOVN hypervisor
software.

Without loss of generality, to simplify the description, we
assume that a single lossless priority is used. In a real setup,
different priority classes can be configured to segregate loss
tolerant traffic, from mission-critical latency-sensitive traffic
that benefits from losslessness, as shown in the next sections.

4.1 Path of a Packet in zZOVN

The data packets travel between processes (applications)
running inside VMs. Along the way, packets are moved from
queue to queue within different software and hardware com-
ponents. Here we describe the details of this queuing system,
with emphasis on the flow control mechanism between each
queue pair. The packet path trace is shown in Figure 5.

After processing the packets in the VM’s guest kernel,
they are transferred to the hypervisor through a vNIC. The
hypervisor forwards them to the virtual switch, which pro-
vides the communication between VMs and the physical
adapter. Packets destined to remote VMs are taken over
by a bridge with OVN tunneling functionality that encap-
sulates and moves them into the physical adapter queues.
After traversing the physical network, they are delivered to
the destination server, where they are received by the remote
bridge, which terminates the OVN tunnel by decapsulating
and moving them into the destination’s virtual switch input
queues. The virtual switch forwards the decapsulated pa-
ckets to the local hypervisor, which in turn forwards them
to the guest OS. After processing in the guest kernel, the
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received packets are eventually delivered to the destination
application. Based on a careful analysis of the end-to-end
path, we identified and fixed the points of potential loss, la-
beled in white on black in Figure 5, i.e., the vSwitch and
the reception path in the guest kernel.

4.1.1 Transmission Path

On the transmit side, packets are generated by the user-
space processes. As shown in Figure 5, the process issues a
send system call that copies a packet from user space into the
guest kernel space. Next, packets are stored in an sk_buff
data structure and enqueued in the transmit (TX) buffer
of the socket opened by the application. The application
knows whether the TX buffer is full from the return value
of the system call, making this a lossless operation.

Packets from the socket TX buffer are enqueued in the
Qdisc associated with the virtual interface. The Qdisc stores
a list of pointers to the packets belonging to each socket.
These pointers are sorted according to the selected disci-
pline, FIFO by default. To avoid losses at this step, we in-
crease the length of the Qdisc to match the sum of all socket
TX queues. This change requires negligible extra memory.
The Qdisc tries to send the packets by enqueuing them into
the adapter TX queue. If the TX queue reaches a threshold
— typically one MTU below maximum — the Qdisc is stopped
and the transmission is paused, thus avoiding losses on the
TX path of the kernel. When the TX queue drops below
the threshold, the Qdisc is restarted and new packets can
be enqueued in the TX queue of the virtual adapter. Hence,
the transmission path in the guest OS remains lossless as
long as the Qdisc length is properly sized.

Our architecture is based on virtio technology [34], hence
the virtual adapter queues are shared between the guest ker-
nel and the underlying hypervisor software running in the
host user space. The virtio adapter informs the hypervi-
sor when new packets are enqueued in the TX queue. The
hypervisor software is based on Qemu [4] and is responsi-
ble for dequeuing packets from the TX queue of the virtual
adapter and copying them to the TX queue of the zOVN
virtual switch.
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The Qemu networking code contains two components: vir-
tual network devices and network backends. We use the vir-
tio network device coupled to a Netmap [32] backend. We
took the Netmap backend code of the VALE [33] virtual
switch and ported it to the latest version of Qemu with the
necessary bug fixes, mainly related to concurrent access to
the Netmap rings. We use a lossless coupling between the
device and the backend, avoiding — via configuration flags
— the lossy Qemu VLANs. Packets arrive at the vSwitch
TX queue of the port to which the VM is attached. The
vSwitch forwards packets from the TX queues of the input
ports to the RX queues of the output ports using a forward-
ing (FIB) table that contains only the MAC addresses of
the locally connected VMs. If the destination is found to be
local, the respective packets are moved to the corresponding
RX queue; else they are enqueued in the RX port corre-
sponding to the physical interface. From here, packets are
consumed by a bridge that encapsulates and enqueues them
in the TX queue of the physical adapter. Then the lossless
CEE physical network delivers the packets to the destination
server’s physical RX queue.

As shown in Section 2.3, none of the current virtual sw-
itches implement flow control, as also confirmed by our dis-
cussions with some of the virtualization vendors. Therefore
we have redesigned the VALE vSwitch to add internal flow
control and to make the TX path fully lossless, as described
in Section 4.2.

4.1.2  Reception Path

The incoming packets are consumed and decapsulated by
the OVN tunneling bridge from the RX queue of the physical
NIC. Next, they are enqueued in the TX queue of the virtual
switch that forwards them to the RX queue corresponding
to the destination VM. This forwarding is again lossless, see
Section 4.2. The packets are consumed by the Qemu hyper-
visor, which copies them into the virtio virtual device. The
virtual device RX queue is shared between the hypervisor
and the guest kernel. The hypervisor notifies the guest when
a packet has been received and the guest OS receives an in-
terrupt. This interrupt is handled according to the Linux?
NAPI framework. A softirg is raised, which triggers packet
consumption from the RX queue. The packet is transferred
to the netif_receive_skb function that performs IP rout-
ing and filtering. If the packet is destined to the local stack,
it is enqueued in the destination socket RX buffer based on
the port number. If the destination socket is full, then the
packet is discarded. With TCP sockets this should never
happen because TCP has end-to-end flow control that lim-
its the number of injected packets to the advertised window
of the receiver. UDP sockets, however, require additional
care. We modified the Linux kernel such that when the des-
tination socket RX queue occupancy reaches a threshold —
i.e., one MTU below maximum — the softirq is canceled and
reception is paused. Once the process consumes data from
the socket, reception is resumed. This ensures full lossless
operation for both TCP and UDP sockets.

4.2 zVALE: Lossless virtual Switch

As stated before, our lossless vSwitch is derived from
VALE [33], which is based on the Netmap architecture [32].
It has one port for each active VM, plus one additional port
for the physical interface. Each port has an input (TX)
queue for the packets produced by the VMs or received from



Algorithm 1 Lossless vSwitch Operation.

e Sender (I;)
while true do
Produce packet P
if Input queue I; full then
Sleep
else
I;.enqueue(P)
start Forwarder(1;)
end if
end while

e Receiver (Oy)
while true do
if Output queue Oy empty then
for all Input queue I; do
start Forwarder(I;)
end for
end if
if Output queue Oy empty then
Sleep
else
P + Oy.dequeue()
consume packet P
end if
end while

e Forwarder (I;)

for all packet P in input queue I; do
output port k < fwd table lookup(P.dstM AC')
if not Output queue Ok full then
I;.remove(P)
Oy.enqueue(P)
wake-up receiver (Ox) and sender (I;)
end if
end for

the physical link, and an output (RX) queue for the packets
to be consumed by VMs or sent out over the physical link.
The lossy state-of-the-art implementation forwards packets
from input to output queues as fast as they arrive. If an
output queue is full, packets are locally discarded.

To make such a software switch lossless, we designed and
implemented the pseudocode shown in Algorithm 1. Each
sender (producer) is connected to an input queue I;, and
each receiver (consumer) is connected to an output queue
Of. After a packet has been produced, the sender checks
whether the associated input queue is full. If the queue is
full, the sender goes to sleep until a free buffer becomes avail-
able, else the sender enqueues the packet in the input queue
and then starts a forwarding process to try to push packets
from the input to the output queues. The forwarder checks
each output queue for available space. If a queue has room,
the forwarder transfers the packets to the output queue and
wakes up the corresponding consumers that might be wait-
ing for new packets. On the receiver side, the associated
output queue is checked; if not empty, a packet is consumed
from it, else the forwarding process is started to pull pack-
ets from the input queues to this output queue. If data is
actually pulled, it is consumed; else the receiver sleeps until
woken up by the sender.

The vSwitch is designed to operate in a dual push/pull
mode. When the sender is faster (than the receiver), it will
sleep most of the time waiting for free buffers, while the
receiver will wake it up only when it consumes data. When
the receiver is faster (than the sender), it will sleep most of
the time, while the sender will wake it up only when new
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High Level
Aggregator

Figure 6: Partition-Aggregate (PA) application.

data becomes available. The overhead of lossless operation
is thus reduced to a minimum.

S. EVALUATION

In this section we evaluate our proposed lossless vSwitch
architecture, applying the Partition-Aggregate (PA) work-
load described in Section 5.1. We run this workload both
in two lab-scale experiments with 32 VMs and in a larger-
scale simulation using an OMNeT++ model of a 256-server
network.

5.1 Partition-Aggregate Workload

A generic 3-tier PA application is presented in [8, 41] and
illustrated in Figure 6. At the top tier, a high-level aggrega-
tor (HLA) receives HTTP queries from external clients (1).
Upon reception of such a request, the HLA contacts ran-
domly selected Mid-Level Aggregators (MLA) and sends
them a subquery (2). The MLAs further split the sub-
query across their workers, one in each server in the same
chassis (3). Eventually, each worker replies to the MLA
by returning a response. The MLA collects the partial re-
sults from workers. When all results have been received,
the MLA sends its aggregated response to the HLA. The
query is completed when the HLA receives the aggregated
response from each MLA. The key metric of interest is the
flow (or query) completion time, measured from arrival of
the external query until query completion at the HLA. In
the prototype experiments, similar with the experiments de-
scribed in [8, 41], we use a reduced two-tier PA workload, in
which the MLAs have been omitted, and the HLAs contact
the workers directly. In the simulations, on the other hand,
we use the full configuration. In both cases, the flows are
sent over TCP. The connections between the various com-
ponents are kept open during the runs to allow TCP to find
the optimal congestion window sizes and to avoid slow start.

5.2 Microbenchmarks

First, we deployed our prototype implementation on two
Lenovo M91p-7034 desktops (Intel i5-2400 @ 3.10GHz CPU,
8GB memory, Linux 3.0.3 64-bit kernel both for host and
guests). The machines were connected through a 1 Gbps
3com 3GSUO5 consumer-level Ethernet switch supporting
IEEE 802.3x. The host kernel was patched with the Netmap
[32] extensions and our zOVN switch and bridge. The guest
kernel was patched with our lossless UDP socket extension.

We ran PA queries with a single aggregator and five work-
ers. In Figure 7 we report the mean query completion time.
In Figure 7a the aggregators and the workers resided in VMs
on the same server (l-server setup), whereas in Figure 7b
the aggregator was on a different server than the workers
(2-server setup). We varied the size of the workers response
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Figure 8: Flow size and inter-arrival distribution.

to the aggregator from 2 to 2048 MTUs. To achieve statis-
tical confidence, each run consisted of 10K repetitions. We
compared the Linux Bridge [2] with the lossy VALE imple-
mentation [33] and our proposed lossless zZOVN. On the 2-
server setup, the Netmap-based solutions outperformed the
Linux Bridge, but only for small response sizes (up to 30%
for 2 MTUs). For medium-sized flows, the Linux Bridge
was better (e.g., 8% performance degradation for 64 MTUs
when using zOVN). For large response sizes, the three im-
plementations exhibited similar response times. The phys-
ical link has a constant service rate, so that TCP was able
to find the proper congestion window to avoid most losses.
On the desktop machines, the vSwitch could support up
to 1.45 Gbps of traffic without losses, compared with the
256 Mbps for the laptop machines. However, the maximum
bandwidth through the vSwitch was limited to the 1 Gbps
of the physical link, which was the bottleneck in this case.
Accordingly, we measured loss ratios of less than 0.02%. En-
abling losslessness on such a configuration brings no addi-
tional benefits. However, this result validates the efficiency
of our implementation.

In the 1-server setup, the zZOVN switch was consistently
better than the lossy VALE switch across all runs. The
Linux Bridge exhibited performance variabilities (up to +19%
improvement for the 16 MTU responses over zOVN, but as
much as —65% degradation over zOVN for 128 MTU re-
sponses). The architecture of the Linux Bridge requires one
extra copy for each packet sent or received. This extra over-
head slows down the workers reducing the pressure on the
vSwitch, thereby reducing packet losses. In the 2-server sce-
nario, the extra overhead was hidden by the physical link
bottleneck.

5.3 Lab-Scale Experiments

Next, we deployed zOVN over the two testbeds described
in Figure 9. We ran a PA workload using 32 VMs with the
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Physical machine 1

Physical machine 2 Physical machine N

~— — > Commands

Physical Switch Statistics
Testbed 1 Testbed 2
Lenovo T60p IBM System x3550 M4
SHEITERD 10 Laptops Rack Servers
1x Intel Core 2 2x Intel Xeon
crPU T7600 E5-2690
Total cores 2 16
Clock speed [GHz| 2.33 2.90
Memory [GB] 3 96
Physical machines 8 4
VMs/machine 4 16
Data network 1G Ethernet 10G CEE
Physical switch HP 1810-8G IBM RackSwitch G8264
Control network wireless 1G wired
Linux kernel 3.0.3 64-bit 3.0.3 64-bit

Figure 9: Real implementation testbeds.

same methodology and flow sizes as in the previous para-
graph. In addition, we varied the TCP version between
NewReno, Vegas and Cubic. As shown in Figure 9, each
physical machine has two network interfaces. The PA traffic
that is subject to measurements flows through an isolated
data network. The workers, aggregators and background
traffic generators are started and killed through a separate
control network, which is also used to configure the data
network before each run and to gather the statistics at the
end without interfering with the experiments.

Testbed 1: Laptops. In Figure 10a and 10b, we report
the mean completion time and performance gain of zero-
loss (Z) over lossy (L). The zero-loss configuration has flow
control enabled both in the physical and the virtual network,
whereas the lossy configuration has no flow control in any
of the two networks. The mean flow completion time was
reduced by a factor of up to 19.1x. The highest benefit was
achieved for flow sizes between 6 KB and 48 KB (4 and 32
packets). For very small flows, the total size of all worker
responses was too small to cause any buffer overflow. For
long flows, the losses were recovered through fast-retransmit
and selective acknowledgments. All TCP versions performed
about equally.

In Figure 10c and 10d, we report the same metrics, but
with background traffic. In this scenario, each VM hosts
an additional traffic generator producing background flows.
The generator chooses a random uniformly distributed desti-
nation, then it sends to it a TCP flow with the length drawn
from the distribution in Figure 8a. Afterward, the generator
sleeps according to the background flow inter-arrival distri-
bution shown in Figure 8b. Both the PA and the background
flows use the same TCP version. The gain is smaller than
in the previous scenario, because the background flows also
benefit from losslessness obtaining a higher throughput. In
particular, the congestion window of NewReno and Cubic
are kept open due to the absence of losses. On the other
hand, the latency sensitive Vegas injects background traffic
at a lower rate, thus the completion times are shorter.

Testbed 2: Rack Servers. We repeat the above exper-
iments on 4 rack servers with a 10G CEE network. FEach
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Figure 11: Testbed 2 results: 32 VMs PA running on 4 rack

server hosts 16 VMs: 8 for PA traffic and 8 VMs for gener-
ating background traffic. We studied four flow control con-
figurations: no flow control (LL), flow control activated in
the physical network (LZ), flow control activated in the vir-
tual network (ZL), and flow control activated in both (ZZ).
The mean completion times and gains over LL are reported
in Figure 11a and 11b. The mean completion times are re-
duced by a factor up to 15.95x, similar to the laptop experi-
ments. Although the server CPUs have more resources than
the laptop CPUs, they have to handle more VMs and more
traffic from a 10x faster network. Activating flow control
only in the physical network (LZ) showed no major bene-
fit in this scenario, where the primary bottleneck is in the
vSwitches. Also, enabling flow control only in the vSwitch
(ZL) shifted the drop point from the virtual to the physical
domain. Finally, in Figure 11c and 11d, we repeated the ex-
periments with background traffic, confirming the findings
from Testbed 1.

5.4 Simulation Experiments

To finalize our validation, we implemented a model of the
zOVN system on top of the OMNeT++ network simulator.
The simulator models a 10G CEE fabric at frame level with
generic input-buffered output-queued switches. As the TCP
models implemented in OMNeT++, as well as those from
NS2/3, are highly simplified, we ported the TCP stack from
a FreeBSD v9 kernel into this simulator with only minimal
changes, most of them related to memory management. As
we focus on the network, we did not model the endnode
CPUs, assuming that the endnodes can process the seg-
ments as fast as they arrive, and that the applications can
reply immediately. The stack adds only a fized delay to
each segment, calibrated from our prior hardware experi-
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servers.

ments. Even if idealized, these assumptions are consistent
with our network-centric methodology. The simulator also
incorporates a thin UDP layer used for background flows
performing simple segmentation and encapsulation of the
application data.

The zOVN model performs switching and bridging in the
same way as in the testbed experiment. However, here
we chose a different encapsulation size of 54B, reflecting
a VXLAN-type encapsulation: 18B outer Ethernet header
+ 20B outer IP header + 8B UDP header + 8B VXLAN
header. To avoid fragmentation, we decreased the MTU
value accordingly from 1500B to 1446B. Modern CEE hard-
ware is able to increase its physical MTUs, thus preserving
the default settings.

The simulated network topology is shown in Figure 4. It
consists of 256 servers, distributed in 16 chassis, and inter-
connected through a three-layer fat tree. Clients attached
to the up-links inject HT'TP queries that are served by the
VMs residing on each virtualized server. The queries were
generated according to the inter-arrival times shown in Fig-
ure 8b. Each server hosts 3 VMs, one HLA, one MLA and
one worker. The client query reaches a randomly chosen
HLA that in turns chooses 16 MLAs, one in each chassis.
Each MLA contacts all worker VMs from the same chas-
sis. The messages exchanged between the HLA, MLAs and
workers have a fixed size of 20KB.

Figure 12 compares the mean completion times and the
5- and 95-percentiles for different flow control configurations
under no, light, and heavy background traffic. We stud-
ied the four flow control configurations introduced above
(LL, LZ, ZL, and ZZ) and the same three TCP versions as
before. Enabling flow control in only one network (either
physical or virtual) is not beneficial, because packet losses
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are merely shifted from one domain to the other. However,
the effects were not altogether identical, because the virtual
flow control still benefited inter-VM communications on the
same host. Therefore, enabling only the virtual flow con-
trol (ZL) still led to a performance improvement, although
smaller than in the ZZ case. Enabling both flow controls
(ZZ) achieved significant gains, similar to those observed in
the testbed: a reduction in FCT of up to 10.1x with Cubic,
and no background flows. When adding light background
traffic, we observed similar gain decreases. However, a new
insight is that in the presence of heavy UDP background
traffic, enabling flow control will harm performance. In this
case, the uncooperative background UDP packets did no
longer get dropped and, consequently, hogged link capacity
and harmed the foreground PA workload traffic. These re-
sults confirmed the need to segregate the traffic into PFC
priorities with true resource separation and scheduling. It
may also suggest the need for a layer-2 congestion manage-
ment loop as in [18].

With background traffic, Vegas outperformed NewReno
and Cubic, confirming the results obtained on the testbed
setups. In the case without background traffic Vegas was
again better. Nonetheless, on the testbeds, all TCP versions
produced similar results. The difference here is due to the
more complex communication pattern with more hops, as
more flows share the same path. This causes longer queues,
especially in the core switches. The longer delays are de-
tected by Vegas, which will reduce its congestion window,
thus obtaining shorter completion times.

6. DISCUSSION

Here we review the main takeaways from the results pre-
sented in this paper. Using zOVN’s experimental platform,
we demonstrated both absence of packet drops — in support
of converged storage and HPC applications — and improved
flow completion time (FCT) performance. Thus, we have
achieved our primary objective of reconciling performance
with losslessness for overlay virtual networks.

Is lossless flow control more relevant for physical or for vir-
tual networks? Having tested all four combinations of lossy
and lossless physical and virtual flow control both in our
testbed and in simulations, we found that contiguous end-
to-end flow control, hop-by-hop within each domain, yields
the largest reductions in FCT: PA over zOVN with 32 vir-
tual workers distributed across four physical rack servers
achieved up to 15-fold peak speedup. Relevant to on-line and
data-intensive workloads in general, the highest speedups
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recorded are for flows between 6 and 50 KB. Unexpectedly, if
a suboptimal choice between flow control in either the phys-
ical or the virtual network must still be made, the latter is
better for FCT performance, as demonstrated by the results
for ZL vs. LZ in Figure 12. As noted initially, this situation
entails a paradoxical twist: Although CEE and InfiniBand
fabrics have already implemented the costlier (buffers, logic,
and signaling) hardware flow control, this remains practi-
cally non-existent in today’s virtual networks - despite much
lower implementation efforts.

Are our modest experimental platforms relevant for hun-
dreds of blade-based racks and top-of-rack switches with 40-
100 Gbps uplinks? While the definitive answer would entail
a multi-million dollar datacenter setup, we are confident in
the relevance of our admittedly limited prototype platforms.
Thin and embedded low-power CPUs as used in microservers
as well as fully virtualized, and hence loaded, “fat” CPUs
are likely to exhibit qualitatively similar behaviors as these
measured on our two testbeds.

During zOVN experiments we consistently observed how
the loss ratio is influenced by the CPU/network speed ra-
tio. On the transmit side, a fast Intel Xeon? CPU can easily
overload a slower 1G network, producing more losses in the
vSwitch than a slower CPU (Intel Core 2) with the same
1G NIC does. On the other hand, on the receive side, a
fast 10G network coupled with a loaded Intel Xeon CPU
produces more drops than the 1G network with the same
CPU does. As TX is network-limited, a fast network is ben-
eficial on the TX side — but hurts performance on the RX
side — whereas a fast CPU is beneficial on the RX side —
processor-limited — while it hurts the TX side. In conclu-
sion, a different CPU/network speed ratio is not a viable
substitute for a correct implementation of flow control in
the virtual network.

7. RELATED WORK

In recent years, the TCP incast and flow completion time
performance of Partition-Aggregate applications has been
extensively analyzed. For example, [15, 39] suggest a 10-
1000x retransmission timeout reduction. Other proposals
achieve sizable flow completion time reductions for typical
datacenter workloads using new single-path [8, 9, 41, 38] or
multi-path [42, 24, 36, 7] transports. These are coupled with
deadline-aware or agnostic schedulers and per-flow queuing.
Related to our work and to [22, 18], DeTail [42] identifies
packet loss in physical networks as one of the three main is-
sues. The authors enable flow control, i.e., PFC, and intro-



duce a new multi-path congestion management scheme tar-
geted against flash hotspots typical of Partition-Aggregate
workloads. They also employ explicit congestion notification
(ECN) against persistent congestion. DeTail uses a modified
version of NewReno to reduce flow completion time by 50%
at the 99.9-percentile, but does not address virtual overlays.

pFabric [10] re-evaluates the end-to-end argument. It in-
troduces a “deconstructed” light transport stack resident
in the end node and re-designed specifically for latency-
sensitive datacenter applications. Furthermore, a greedy
scheduler implements a deadline-aware global scheduling and
a simplified retransmission scheme recovers losses. By re-
placing both the TCP stack and the standard datacenter
fabric, this scheme achieves near-ideal performance for short
flows. Open issues are the scalability to datacenter-scale
port counts, costs of replacing commodity fabrics and TCP
version, fairness, and compatibility with the lossless con-
verged datacenter applications.

DCTCP [8] uses a modified ECN feedback loop with a
multibit feedback estimator filtering the incoming ECN str-
eam. This compensates the stiff active queue management
in the congestion point detector with a smooth congestion
window reduction function reminiscent of QCN’s rate de-
crease. DCTCP reduces the flow completion time by 29%,
however, as a deadline-agnostic TCP it misses about 7% of
the deadlines. D3 [41] is a deadline-aware first-come first-
reserved non-TCP transport. Its performance comes at the
cost of priority inversions for about 33% of the requests [38]
and a new protocol stack. PDQ [24] introduces a multi-path
preemptive scheduling layer for meeting flow deadlines using
a FIFO taildrop similar to D3. By allocating resources to
the most critical flows first, PDQ improves on D3, RCP and
TCP by circa 30%. As it is not TCP, its fairness remains to
be studied. D2TCP [38] improves on D3 and DCTCP, with
which it shares common features in the ECN filter, by penal-
izing the window size with a gamma factor. Thus, it provides
iterative feedback to near-deadline flows and prevents con-
gestive collapse. This deadline-aware TCP-friendly proposal
yields 75% and 50% fewer deadline misses than DCTCP and
D3, respectively. Hedera and MP-TPC [7, 23, 31] propose
multi-path TCP versions optimized for load balancing and
persistent congestion. However, short flows with fewer than
10 packets or FCT-sensitive applications do not benefit, de-
spite the complexity of introducing new sub-sequence num-
bers in the multi-path TCP loop.

8. CONCLUDING REMARKS

Fabric-level per-lane flow control to prevent packet loss
due to contention and transient congestion has long been
the signature feature of high-end networks and HPC inter-
connects. The recent introduction of CEE priority flow con-
trol has now made it a commodity. In spite of the advances
at layer-2, we have shown that present virtual overlays lag
behind. Congestion, whether inherent in the traffic pattern
or as an artifact of transient CPU overloads, is still han-
dled here by dropping packets, thus breaking convergence
requirements, degrading performance, and wasting CPU and
network resources.

We provided first evidence that, for latency-sensitive vir-
tualized datacenter applications, packet loss is a costly sin-
gularity in terms of performance. To remedy this situation,
we have identified the origins of packet drops across the en-
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tire virtualized communication stack, and then designed and
implemented a fully lossless virtual network prototype.

Based on the experimental results using our prototype
implementations and also larger-scale simulations, we have
demonstrated average FCT improvements of one order of
magnitude. Additional takeaways are that (i) packet loss
in virtualized datacenters is even costlier than previously
studied in physical networking; (ii) FCT performance of
Partition-Aggregate workloads is greatly improved by loss-
lessness in the virtualized network; (iii) commodity CEE
fabrics and standard TCP stacks still have untapped per-
formance benefits. Furthermore, zOVN can be orthogonally
composed with other schemes for functional or performance
enhancements on layers 2 to 5.
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