
Simplifying FPGA Design with A Novel Network-on-Chip
Architecture

John Malsbury
Ettus Research

1043 N Shoreline Blvd
Suite 100

+1 (650) 967-2870
john.malsbury@ettus.com

Matt Ettus
Ettus Research

1043 N Shoreline Blvd
Suite 100

+1 (650) 967-2870
matt@ettus.com

ABSTRACT

As wireless communications continue to evolve, complex new
standards force researchers to adopt heterogeneous design
approaches that include general purpose processors (GPP) and
field-programmable gate arrays (FPGA). This combination leads
to increased processing throughput, decreased latency, and
increased development complexity. Compared to GPP
implementations, custom FPGA designs are time-consuming. The
Third-Generation Ettus Research USRPTM (Universal Software
Radio Peripheral) has been developed with a unique processing
and routing architecture based on VITA-49, which can drastically
reduce FPGA development time. This architecture allows users to
easily integrate custom IP, such as channelizes, modulators,
demodulators, processors or protocol stacks. The architecture will
also permit scalable designs that can distribute processing across
many nodes. This paper will examine this architecture and how it
will reduce development time for researchers. A practical
example will also be provided for reference.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication

General Terms
Algorithms, Performance, Design, Experimentation,

Keywords
Software-defined radio, FPGA, heterogeneous systems, VITA-49,
VRLP, SDR, GNU Radio, high-performance computing

1. Introduction
The Ettus Research USRP™ (Universal Software Radio
Peripheral) has seen widespread adoption as a wireless

prototyping platform. It has been used in a large number of
research areas with resurgent interest, such as:

 High-Bandwidth Cognitive Systems’

 New standards such as 802.11ac and LTE-A

 Massive MIMO Systems

While the USRP is often paired with GNU Radio and a general-
purpose processor (GPP) for research, these new applications and
standards are driving requirements for higher throughput, lower
latency processing. In many cases, a pure GPP implementation
does not scale gracefully to growing processing demands.

Developers addressing the latest challenges in wireless research
must adopt a heterogeneous design approach. DSP and
networking functions must be allocated to Field-programmable
gate arrays (FPGA), Graphics Processing Units (GPU), and GPPs
in an efficient manner. This presents a variety of challenges.

One of those challenges relates to the transport of data throughout
the system – internal and external to the FPGA. An FPGA gives
infinite latitude for bus and interface design. The designer can
choose to implement data transport mechanisms how he/she
chooses. This flexibility often leads to re-invention, and results in
solutions that are not compatible.

Radio transport protocols (RTP) may offer a way to address this
challenge. Developing a standard and consistent way to transport
data throughout complex heterogeneous systems will maximize
design re-use and reduce development time.

2. Overview of Radio Transport Protocols
When defining a radio transport protocol, it is worth investigating
existing protocols, such as VITA-49.

2.1 Introduction to VITA-49
The VITA-49 Radio Transport (VRT) standard was established to
provide a consistent way to format sampled IF or I/Q data in
software-defined radio systems. Prior to VRT, every vendor
developed proprietary protocols to transport samples across the
processing elements of an SDR. The VITA-49 frame format can
be seen in Figure 1. Vendors can choose to conform to a basic
frame, which includes a single header word and the payload, or
elect to include information that expresses the type and use of the
payload data. Optional timestamps also provide a mechanism for
precise temporal alignment within a processing system.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SRIF’13, August 12, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2181-5/13/08…$15.00.

45

Figure 1 - VITA-49 Frame Format

2.2 VITA-49 Deployment With Second-
Generation USRP Devices
VITA-49 was chosen as the underlying transport protocol for
UHD-enabled devices. In this case, VITA-49 is used to transport
samples and control messages to and from the host-computer via
USB 2.0, Ethernet, or external memory interfaces.

In the case of the USRP N-series, the samples are transported over
a Gigabit Ethernet (GigE) interface. The VITA-49 frames are
encapsulated with UDP. This combination of VITA-49 and UDP
facilitates distributed processing design. When initializing the
device, a user can specify an arbitrary streaming destination (IP
address). A processing device, such as a GPU or FPGA would be
assigned to that address, receive the samples, and pass them along
for further processing by other elements. An example of such a
use case is shown in Figure 2.

Figure 2 - External FPGA Stream Processing with VITA-49

This reference design highlights the capability of a transport
protocol. In this case, 32 separate streams are produced by a
number of USRP devices. The streams are muxed onto four 10
GigE ports, and the data is fed to the FPGA for processing. A
block examines the time-stamp in the VITA-49 header and aligns
samples for coherent processing by 40-beamformers.

In this example, VITA-49 provides a way to distribute data to a
number of components connected with an interface such as 10
GigE. This allows designers to build modular systems, and
provides a consistent ‘language’ for every device to communicate
with. This concept can also facilitate FPGA design.

3. Developing a Third-Generation
Architecture

3.1 Goals of a Third-Generation Architecture
Use of the VITA-49 standard in the second-generation SDR
permitted many interesting applications. As FPGAs become more
capable, and there is a greater need to leverage FPGAs for low-
latency, high-bandwidth processing, there are benefits to
leveraging a radio transport protocol both internally, and
externally.

Internal transport implementation offers several benefits. Just as
VITA-49 permitted modular processing solutions, internal
transport designs would allow the user to develop and integrate
modular IP inside the FPGA, without drastic impacts to other
components in the design. Also, conforming to a standard
improves design re-use, and reduces development time. For these
reasons, third-generation USRP devices will use a radio transport
structure that facilitates FPGA integration as well as external,
distributed processing.

It is worth establishing some general characteristics of the FPGA
routing architecture. The intent is to develop a framework that
meets the following requirements:

1. Revolves around the concept of data streams, in the
same manner as VITA-49.

2. There will be producers and consumers of streams.
3. Each producer will be able to route a stream of data to

an arbitrary consumer within the FPGA.
4. Each consumer will be able to consume a stream from

any producer.
5. Routing fabric will use a header that is present at the

beginning of a stream-write to route the stream
accordingly.

3.2 Modern Bus Architecture – AXI
When designing a radio transport protocol for use within the
FPGA, a designer must consider characteristics and features of
modern bus architectures that are available.

Modern FPGAs such as the Xilinx 6 or 7 series FPGAs offer
clean support for the Advanced eXtensible Interface (AXI). This
bus is part of the ARM AMBA standard. The latest definition for
this bus is AXI4, of which there are three types:

1. AXI4 – high-speed memory mapped interface
2. AXI4-Lite – simple, low throughput memory-mapped

communication
3. AXI4-Stream – high-speed streaming data

The AXI4-Stream was chosen for this implementation, since it is
focused on a data-flow paradigm. Compared to AXI4, which is
intended for memory-mapped operations, the AXI4-Stream
eliminates the address cycle. It can also support data bursts of
arbitrary size. In essence, it is an ideal standard for “plumbing”
of data within and FPGA because it can provide high-
performance data transport with relatively simple logic.

AXI4 and AXI4-Stream can support 32, 64, 128, or 256-bit data
widths. While AXI4-Stream does not include an address cycle,
the data within streams will include headers, which provide

46

addressing and other information for data routing. Routing logic
must inspect this data for multiplexing. 128-bit and 256-bit
addressing logic is more challenging to route in the FPGA while
meeting timing constraints. A data width of 64-bits is provides a
balanced trade of throughput versus FPGA routing complexity.

Xilinx offers branded cores that conform to the AXI4 standard.
There are also a large number of third-party IP vendors that use
AXI4. There are IP blocks called “datamovers” that can easily
adapt from AXI4 to AXI-Stream for implementations that require
memory-mapped interfaces. For example, an FFT block or soft-
core processor is more suited for the memory mapped AXI4
interfaces.

3.3 Compressed Header (CHDR)
The compressed header format (CHDR) considers characteristics
of existing protocols, as well as the benefits and limitations
imposed by a 64-bit AXI4-Stream. Looking at implementations
in second-generation USRPs, it is evident that approximately 64-
bits are required to meet basic routing requirements. A single, 64-
bit header word can express the stream source and destinations,
and provide a frame count.

Table 1- Compressed Header - 64-bits

Bits Function

31-0 Stream ID

47-32 Packet Size (words)

59-33 Sequence Number

60 1 = End-of-Burst

61 1 = Has Time

62 1 = Has Trailer

63 1 = Context?

Expressing this information with single, 64-bit words allows
muxes, demuxes, and other elements to easily parse and produce
data without complex state machines. This improves throughput,
and facilitates timing closure in the FPGA build process.

If necessary, the time can be included. As previously established
in second-generation implementations, 64-bits is sufficient for
time stamping with sample-clock resolution.

3.4 CHDR Transport Over Media
While CHDR provides a convenient method to standardize
internal FPGA interfaces, it also provides a way to design scalable
systems. Combining the internal routing capability of CHDR

with the external distribution capability of VITA-49 will allow
for more straightforward designs and distributed processing.

Figure 3 - Encapsulation of CHDR for Transmission over
Ethernet

Figure 3 shows the frame formats involved when transmitting
data over 10 Gigabit Ethernet. It is worth noting that each of the
routing points in this system are configurable. For example, the
internal radio transport router can move streams between
components internally. Alternatively, the router can pass a stream
to a host-interface, which includes a VITA-49 framer and UDP
framer. The VITA-49 and UDP framers can be configured to
stream to another USRP of a specific IP address. That USRPs
transport router will receive the stream, parse the header’s Stream
ID, and route the stream to another block such as a computational
engine or radio block.

Examples of this sort of routing will be shown in latter sections of
this paper.

47

Figure 4 - Second-Generation USRP Architecture

4. Implementation

4.1 FPGA Architecture of Second-
Generation USRPs
The second-generation FPGA architecture, which is shown in
Figure 4, made the process of integrating custom DSP functions
easier. Readme files and makefiles could be readily modified to
splice DSP blocks anywhere in the DDC and DUC chains.
These are referred to “rx_dsp_chain” and “tx_dsp_chain”,
respectively.

Considering the receive chain, a researcher can integrate a
custom block in several points. A block can interface directly
with the ADC frontend and process baseband samples at the full
sample rate – 100 MS/s in the case of the USRP N210. A block
can also be integrated after the decimation stages, just before the
VITA-49 framer, which is labeled as “Rx Control” in the
diagram above. The same is basically true in the transmit
directions. This architecture facilitate in-line DSP operations.

The VITA-49 framers and de-framers also offer a modest
amount of flexibility for operations such as sample size
truncation.

4.2 Third-Generation FPGA Architecture
The third-generation USRP architecture leverages radio
transport protocols to a greater extent. The transport protocol is
used for data routing inside the FPGA, as well as data transport
to and from the host computer. The architecture includes
several components, and is illustrated in Figure 5.

Any component that is connected to the Radio Transport Router
communicates using the CHDR format. The router is able to
pass data between any component in a non-blocking fashion.
For example, a received sample stream generated by Radio0 can
be routed to a computation engine while a stream from Radio1
can be routed directed to the UDP framer and Eth0 interface.
The router will support this at the full data rate.

Figure 5 - Radio Transport Protocol Implementation

The radio blocks, “Radio0” and “Radio1” include a DUC chain,
DDC chain, and control functions. These blocks provide
approximately the same functionality of the rx_dsp and tx_dsp
chains of the second-generation architecture. However, unlike
the second-generation architecture, these radio modules will be
connected to the RTR instead of to the host-interface
infrastructure. This allows data to be routed to any other block
in the system – computation engines or a host-interface.

48

Figure 6 - Radio Block - Rx/Tx DSP Implementation

The blue components shown in Figure 5 are computation
engines. These can provide a wide array of functionality -
channelization, modulation, demodulation, FFTs. Computation
engines can also take on more complicated, frame-based
functions. For example, the computation engine might include a
soft-core processor and implement an entire protocol stack, or
provide intelligence for control plane activities in a cognitive
radio.

Of course, the router also connects to key components of the
host interface, which is used to exchange data and control-plane
information with the host. In this case, the USRP provides
several host-interface options – two 1/10 Gigabit Ethernet ports,
and PCIe. There are numerous ways these host-interfaces can
be connected for large, scalable systems.

A soft-core CPU will provide basic management and
autonomous configuration capability, but will not be directly
involved with the high-speed processing associated with
components connected to the radio transport router. The host
will be able to communicate with the CPU directly.

4.3 Router and Stream Configuration
The RTR functions as a non-blocking cross-switch. Figure 5
shows an RTR with 9 ports. The number of ports in the RTR
will be configurable at build-time, and will typically be set for
8-ports. For the sake of simple illustration, a cross-switch
architecture for a 4-port RTR is shown in Figure 7.

Figure 7 - RTR Cross-Switch

Router logic at the input of each port will examine the first word
of a data burst – the CHDR – to determine where it must route
the data. This decision will be based on run-time configuration
of routing tables and the destination source. In other words, the

data source must be configured to assign a stream id, and the
router must be configured to direct a data-burst with a given
stream id to the appropriate destination. These parameters will
be easily settable through the host-driver API.

4.4 Example - Heterogeneous PHY/MAC
Implementation
In this architecture, there are several host-interface options.
PHY/MAC development will often require low-latency in the
system. For this reason, the PCIe is an ideal choice.

 To meet the demands of high-bandwidth protocols such as
LTE-A or 802.11ac, the researcher will implement a portion of
PHY and lower MAC layers in the FPGA. In order to maintain
a greater level of flexibility in the upper MAC layers, the
researcher will implement this on the host using GNU Radio,
LabVIEW, IRIS, or use the UHD C++ API directly.

The flow of information using the RTR is shown in Figure 8. In
this case, packet data units(PDUs) are passed from the host-
computer to an OFDM modulator. Baseband samples are
passed from the OFDM modulator to Radio0. Conversely,
received baseband samples generated by Radio0 are passed to
the OFDM demodulator. Received PDUs are passed to the host-
PC through the PCIe interface. Proper design, and intelligent
use of timed-features will ensure proper timing and alignment of
transmission operations.

Figure 8 - Heterogeneous PHY/MAC Implementation

This example provides several benefits.

4.5 Example – Distributed Processing

In the example shown in Figure 9, a single host-interface is
used, but signal processing functions are split across multiple
SDRs. Such a system might be useful for complex spectrum
monitoring operations, multi-carrier receivers, or similar
applications.

A received sample stream is produced by the first USRP.
Before passing along for further processing, the data (red) is
routed to an impairments correction block. This block might
apply adaptive corrections to minimize I/Q imbalance. Next,
the corrected I/Q data (purple) is passed through an Ethernet
connection a second device. The second device does not make
use any radio frontends. It only provides additional DSP
resources. In this device, corrected I/Q data is passed to a
channelizer, a multi-channel power detector, and a
demodulator/deframer(light purple). The fully demodulated and
frame synchronized data is passed to the host through the
cascade 10 GigE interface.

49

Figure 9 - Scalable System Design with RTR

A system of this architecture can be expanded to include an
arbitrary number of processing nodes. Each additional node
will use the cascaded Ethernet interfaces of the previous nodes
to pass data back to the host.

4.6 Example –Massive MIMO Systems
The distributed processing architecture shown in the previous
section be modified slightly to build massive MIMO
configuration. This is an area of strong research interest.
Multiple USRPs can be time and frequency synchronized. This
allows coherent processing for MIMO systems.

In this case shown in Figure 10, each USRP device would
provide 1-2 frontends. Processing can be performed on each
USRP unit, or distributed throughout the system.

Figure 10 - Massive MIMO 16x16

Figure 10 shows a 16x16 systems. In this case, data is shared
across multiple USRPs through a daisy-chained 10 GigE
connection. Of course, careful consideration needs to be given
to total bandwidth and where various portions of processing will
occur. It is also possible to add multiple host-computers A
system like this might be used to apply progressive beam-
forming on a large array in an incremental fashion.

Figure 11 - Massive MIMO System

 While the example shown in Figure 10 show a system that
relies on cascading of the 10 GigE interface to achieve 16x16
MIMO, it is also possible to connect each device to a 10 GigE
switch, and share information across multiple hosts. Or, a
hybrid approach can be used. Strands of cascaded USRPs can
be connected to a switch in a star configuration. Such system
architectures will form the basis of massive-MIMO prototyping
systems.

5. Conclusion
Examination or radio transport protocols shows that they canbe
used to build complex processing systems, improve design re-
use, and potentially decrease development time for
heterogeneous systems. The compressed header format and
routing architecture discussed in this paper have been integrated
into third-generation USRPs, and will allow researchers to meet
demands for increased performance in SDRs.

6. ACKNOWLEDGMENTS
We would like to give thanks to all USRP users and the open
source SDR community.

7. REFERENCES
[1] Bieberly, F.B., Heterogeneous Processing in Software

Defined Radio: Flexible Implementation and Optimal
Resource Mapping, February 8, 2012, Blacksburg,
Virginia

50

[2] Fayez, A., Designing a Software Defined Radio to Run on
a Heterogenous Process, April 15, 2011, Blacksburg
Virginia

[3] Normoyle, R., VITA49 Enhances Capabilities and
Interopability for Transporting SDR Data, April 2008,
Retrieved on from: http://www.pentek.com/
VITA%2049.pdf?Filename=VITA%2049.pdf

51

