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ABSTRACT 

As wireless communications continue to evolve, complex new 
standards force researchers to adopt heterogeneous design 
approaches that include general purpose processors (GPP) and 
field-programmable gate arrays (FPGA). This combination leads 
to increased processing throughput, decreased latency, and 
increased development complexity. Compared to GPP 
implementations, custom FPGA designs are time-consuming. The 
Third-Generation Ettus Research USRPTM (Universal Software 
Radio Peripheral) has been developed with a unique processing 
and routing architecture based on VITA-49, which can drastically 
reduce FPGA development time. This architecture allows users to 
easily integrate custom IP, such as channelizes, modulators, 
demodulators, processors or protocol stacks. The architecture will 
also permit scalable designs that can distribute processing across 
many nodes. This paper will examine this architecture and how it 
will reduce development time for researchers. A practical 
example will also be provided for reference. 

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Wireless 
Communication 

General Terms 
Algorithms, Performance, Design, Experimentation,  

Keywords 
Software-defined radio, FPGA, heterogeneous systems, VITA-49, 
VRLP, SDR, GNU Radio, high-performance computing 

1. Introduction 
The Ettus Research USRP™ (Universal Software Radio 
Peripheral) has seen widespread adoption as a wireless 

prototyping platform.  It has been used in a large number of 
research areas with resurgent interest, such as: 

 High-Bandwidth Cognitive Systems’ 

 New standards such as 802.11ac and LTE-A 

 Massive MIMO Systems 

While the USRP is often paired with GNU Radio and a general-
purpose processor (GPP) for research, these new applications and 
standards are driving requirements for higher throughput, lower 
latency processing.  In many cases, a pure GPP implementation 
does not scale gracefully to growing processing demands. 

Developers addressing the latest challenges in wireless research 
must adopt a heterogeneous design approach.  DSP and 
networking functions must be allocated to Field-programmable 
gate arrays (FPGA), Graphics Processing Units (GPU), and GPPs 
in an efficient manner.  This presents a variety of challenges. 

One of those challenges relates to the transport of data throughout 
the system – internal and external to the FPGA.  An FPGA gives 
infinite latitude for bus and interface design.  The designer can 
choose to implement data transport mechanisms how he/she 
chooses.  This flexibility often leads to re-invention, and results in 
solutions that are not compatible. 

Radio transport protocols (RTP) may offer a way to address this 
challenge.  Developing a standard and consistent way to transport 
data throughout complex heterogeneous systems will maximize 
design re-use and reduce development time.   

2. Overview of Radio Transport Protocols 
When defining a radio transport protocol, it is worth investigating 
existing protocols, such as VITA-49. 

2.1 Introduction to VITA-49 
The VITA-49 Radio Transport (VRT) standard was established to 
provide a consistent way to format sampled IF or I/Q data in 
software-defined radio systems.  Prior to VRT, every vendor 
developed proprietary protocols to transport samples across the 
processing elements of an SDR.  The VITA-49 frame format can 
be seen in Figure 1.  Vendors can choose to conform to a basic 
frame, which includes a single header word and the payload, or 
elect to include information that expresses the type and use of the 
payload data.  Optional timestamps also provide a mechanism for 
precise temporal alignment within a processing system. 
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Figure 1 - VITA-49 Frame Format 

 

2.2 VITA-49 Deployment With Second-
Generation USRP Devices 
VITA-49 was chosen as the underlying transport protocol for 
UHD-enabled devices.  In this case, VITA-49 is used to transport 
samples and control messages to and from the host-computer via 
USB 2.0, Ethernet, or external memory interfaces.   

In the case of the USRP N-series, the samples are transported over 
a Gigabit Ethernet (GigE) interface.   The VITA-49 frames are 
encapsulated with UDP.  This combination of VITA-49 and UDP 
facilitates distributed processing design.  When initializing the 
device, a user can specify an arbitrary streaming destination (IP 
address).  A processing device, such as a GPU or FPGA would be 
assigned to that address, receive the samples, and pass them along 
for further processing by other elements.  An example of such a 
use case is shown in Figure 2.   

 

 

Figure 2 - External FPGA Stream Processing with VITA-49 

This reference design highlights the capability of a transport 
protocol.  In this case, 32 separate streams are produced by a 
number of USRP devices. The streams are muxed onto four 10 
GigE ports, and the data is fed to the FPGA for processing.  A 
block examines the time-stamp in the VITA-49 header and aligns 
samples for coherent processing by 40-beamformers.  

In this example, VITA-49 provides a way to distribute data to a 
number of components connected with an interface such as 10 
GigE.  This allows designers to build modular systems, and 
provides a consistent ‘language’ for every device to communicate 
with.  This concept can also facilitate FPGA design. 

 

 

 

3. Developing a Third-Generation 
Architecture 
 

3.1 Goals of a Third-Generation Architecture 
Use of the VITA-49 standard in the second-generation SDR 
permitted many interesting applications.  As FPGAs become more 
capable, and there is a greater need to leverage FPGAs for low-
latency, high-bandwidth processing, there are benefits to 
leveraging a radio transport protocol both internally, and 
externally. 

Internal transport implementation offers several benefits.  Just as 
VITA-49 permitted modular processing solutions, internal 
transport designs would allow the user to develop and integrate 
modular IP inside the FPGA, without drastic impacts to other 
components in the design.  Also, conforming to a standard 
improves design re-use, and reduces development time.  For these 
reasons, third-generation USRP devices will use a radio transport 
structure that facilitates FPGA integration as well as external, 
distributed processing. 

It is worth establishing some general characteristics of the FPGA 
routing architecture.  The intent is to develop a framework that 
meets the following requirements: 

1. Revolves around the concept of data streams, in the 
same manner as VITA-49. 

2. There will be producers and consumers of streams.   
3. Each producer will be able to route a stream of data to 

an arbitrary consumer within the FPGA. 
4. Each consumer will be able to consume a stream from 

any producer. 
5. Routing fabric will use a header that is present at the 

beginning of a stream-write to route the stream 
accordingly. 

 

3.2 Modern  Bus Architecture – AXI 
When designing a radio transport protocol for use within the 
FPGA, a designer must consider characteristics and features of 
modern bus architectures that are available. 

Modern FPGAs such as the Xilinx 6 or 7 series FPGAs offer 
clean support for the Advanced eXtensible Interface (AXI).  This 
bus is part of the ARM AMBA standard.  The latest definition for 
this bus is AXI4, of which there are three types:  

1. AXI4 – high-speed memory mapped interface 
2. AXI4-Lite – simple, low throughput memory-mapped 

communication 
3. AXI4-Stream – high-speed streaming data 

 
The AXI4-Stream was chosen for this implementation, since it is 
focused on a data-flow paradigm.  Compared to AXI4, which is 
intended for memory-mapped operations, the AXI4-Stream 
eliminates the address cycle.  It can also support data bursts of 
arbitrary size.  In essence, it is an ideal standard for “plumbing” 
of data within and FPGA because it can provide high-
performance data transport with relatively simple logic. 

 

AXI4 and AXI4-Stream can support 32, 64, 128, or 256-bit data 
widths.  While AXI4-Stream does not include an address cycle, 
the data within streams will include headers, which provide 
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addressing and other information for data routing.  Routing logic 
must inspect this data for multiplexing. 128-bit and 256-bit 
addressing logic is more challenging to route in the FPGA while 
meeting timing constraints.  A data width of 64-bits is provides a 
balanced trade of throughput versus FPGA routing complexity. 

Xilinx offers branded cores that conform to the AXI4 standard.  
There are also a large number of third-party IP vendors that use 
AXI4.  There are IP blocks called “datamovers” that can easily 
adapt from AXI4 to AXI-Stream for implementations that require 
memory-mapped interfaces.  For example, an FFT block or soft-
core processor is more suited for the memory mapped AXI4 
interfaces. 

3.3 Compressed Header (CHDR) 
The compressed header format (CHDR) considers characteristics 
of existing protocols, as well as the benefits and limitations 
imposed by a 64-bit AXI4-Stream.  Looking at implementations 
in second-generation USRPs, it is evident that approximately 64-
bits are required to meet basic routing requirements.  A single, 64-
bit header word can express the stream source and destinations, 
and provide a frame count.   

 

Table 1- Compressed Header - 64-bits 

Bits Function 

31-0 Stream ID 

47-32 Packet Size (words) 

59-33 Sequence Number 

60 1 = End-of-Burst 

61 1 = Has Time 

62 1 = Has Trailer 

63 1 = Context? 

 

 

Expressing this information with single, 64-bit words allows 
muxes, demuxes, and other elements to easily parse and produce 
data without complex state machines.  This improves throughput, 
and facilitates timing closure in the FPGA build process.   

If necessary, the time can be included.  As previously established 
in second-generation implementations, 64-bits is sufficient for 
time stamping with sample-clock resolution. 

3.4 CHDR Transport Over Media 
While CHDR provides a convenient method to standardize 
internal FPGA interfaces, it also provides a way to design scalable 
systems.  Combining the internal routing capability of CHDR 

with  the external distribution capability of VITA-49 will allow 
for more straightforward designs and distributed processing. 

 

Figure 3 - Encapsulation of CHDR for Transmission over 
Ethernet 

Figure 3 shows the frame formats involved when transmitting 
data over 10 Gigabit Ethernet.  It is worth noting that each of the 
routing points in this system are configurable.  For example, the 
internal radio transport router can move streams between 
components internally.  Alternatively, the router can pass a stream 
to a host-interface, which includes a VITA-49 framer and UDP 
framer.  The VITA-49 and UDP framers can be configured to 
stream to another USRP of a specific IP address.  That USRPs 
transport router will receive the stream, parse the header’s Stream 
ID, and route the stream to another block such as a computational 
engine or radio block.   

Examples of this sort of routing will be shown in latter sections of 
this paper. 
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Figure 4 - Second-Generation USRP Architecture 

 

 

4. Implementation  

4.1 FPGA Architecture of Second-
Generation USRPs 
The second-generation FPGA architecture, which is shown in 
Figure 4, made the process of integrating custom DSP functions 
easier.  Readme files and makefiles could be readily modified to 
splice DSP blocks anywhere in the DDC and DUC chains.  
These are referred to “rx_dsp_chain” and “tx_dsp_chain”, 
respectively.   

Considering the receive chain, a researcher can integrate a 
custom block in several points.  A block can interface directly 
with the ADC frontend and process baseband samples at the full 
sample rate – 100 MS/s in the case of the USRP N210.  A block 
can also be integrated after the decimation stages, just before the 
VITA-49 framer, which is labeled as “Rx Control” in the 
diagram above.  The same is basically true in the transmit 
directions.  This architecture facilitate in-line DSP operations. 

The VITA-49 framers and de-framers also offer a modest 
amount of flexibility for operations such as sample size 
truncation. 

4.2 Third-Generation FPGA Architecture 
The third-generation USRP architecture leverages radio 
transport protocols to a greater extent.  The transport protocol is 
used for data routing inside the FPGA, as well as data transport 
to and from the host computer.  The architecture includes 
several components, and is illustrated in Figure 5. 

Any component that is connected to the Radio Transport Router 
communicates using the CHDR format.  The router is able to 
pass data between any component in a non-blocking fashion.  
For example, a received sample stream generated by Radio0 can 
be routed to a computation engine while a stream from Radio1 
can be routed directed to the UDP framer and Eth0 interface.  
The router will support this at the full data rate. 

 

 

Figure 5 - Radio Transport Protocol Implementation 

The radio blocks, “Radio0” and “Radio1” include a DUC chain, 
DDC chain, and control functions.  These blocks provide 
approximately the same functionality of the rx_dsp and tx_dsp 
chains of the second-generation architecture.  However, unlike 
the second-generation architecture, these radio modules will be 
connected to the RTR instead of to the host-interface 
infrastructure.  This allows data to be routed to any other block 
in the system – computation engines or a host-interface. 
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Figure 6 - Radio Block - Rx/Tx DSP Implementation 

The blue components shown in Figure 5 are computation 
engines.  These can provide a wide array of functionality - 
channelization, modulation, demodulation, FFTs.  Computation 
engines can also take on more complicated, frame-based 
functions.  For example, the computation engine might include a 
soft-core processor and implement an entire protocol stack, or 
provide intelligence for control plane activities in a cognitive 
radio. 

Of course, the router also connects to key components of the 
host interface, which is used to exchange data and control-plane 
information with the host.  In this case, the USRP provides 
several host-interface options – two 1/10 Gigabit Ethernet ports, 
and PCIe.  There are numerous ways these host-interfaces can 
be connected for large, scalable systems. 

A soft-core CPU will provide basic management and 
autonomous configuration capability, but will not be directly 
involved with the high-speed processing associated with 
components connected to the radio transport router.  The host 
will be able to communicate with the CPU directly.   

4.3 Router and Stream Configuration 
The RTR functions as a non-blocking cross-switch.  Figure 5 
shows an RTR with 9 ports.  The number of ports in the RTR 
will be configurable at build-time, and will typically be set for 
8-ports.  For the sake of simple illustration, a cross-switch 
architecture for a 4-port RTR is shown in Figure 7. 

 

Figure 7 - RTR Cross-Switch 

Router logic at the input of each port will examine the first word 
of a data burst – the CHDR – to determine where it must route 
the data.  This decision will be based on run-time configuration 
of routing tables and the destination source.  In other words, the 

data source must be configured to assign a stream id, and the 
router must be configured to direct a data-burst with a given 
stream id to the appropriate destination.  These parameters will 
be easily settable through the host-driver API. 

4.4 Example - Heterogeneous PHY/MAC 
Implementation 
In this architecture, there are several host-interface options.  
PHY/MAC development will often require low-latency in the 
system.  For this reason, the PCIe is an ideal choice. 

 To meet the demands of high-bandwidth protocols such as 
LTE-A or 802.11ac, the researcher will implement a portion of 
PHY and lower MAC layers in the FPGA.  In order to maintain 
a greater level of flexibility in the upper MAC layers, the 
researcher will implement this on the host using GNU Radio, 
LabVIEW, IRIS, or use the UHD C++ API directly.   

The flow of information using the RTR is shown in Figure 8.  In 
this case, packet data units(PDUs) are passed from the host-
computer to an OFDM modulator.  Baseband samples are 
passed from the OFDM modulator to Radio0.  Conversely, 
received baseband samples generated by Radio0 are passed to 
the OFDM demodulator.  Received PDUs are passed to the host-
PC through the PCIe interface.  Proper design, and intelligent 
use of timed-features will ensure proper timing and alignment of 
transmission operations. 

 

Figure 8 - Heterogeneous PHY/MAC Implementation 

This example provides several benefits.   

4.5 Example – Distributed Processing 
 

In the example shown in Figure 9, a single host-interface is 
used, but signal processing functions are split across multiple 
SDRs.  Such a system might be useful for complex spectrum 
monitoring operations, multi-carrier receivers, or similar 
applications. 

A received sample stream is produced by the first USRP.  
Before passing along for further processing, the data (red) is 
routed to an impairments correction block.  This block might 
apply adaptive corrections to minimize I/Q imbalance.  Next, 
the corrected I/Q data (purple) is passed through an Ethernet 
connection a second device.  The second device does not make 
use any radio frontends.  It only provides additional DSP 
resources.  In this device, corrected I/Q data is passed to a 
channelizer, a multi-channel power detector, and a 
demodulator/deframer(light purple).  The fully demodulated and 
frame synchronized data is passed to the host through the 
cascade 10 GigE interface. 
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Figure 9 - Scalable System Design with RTR 

A system of this architecture can be expanded to include an 
arbitrary number of processing nodes.  Each additional node 
will use the cascaded Ethernet interfaces of the previous nodes 
to pass data back to the host.    

4.6 Example –Massive MIMO Systems  
The distributed processing architecture shown in the previous 
section be modified slightly to build massive MIMO 
configuration.  This is an area of strong research interest.  
Multiple USRPs can be time and frequency synchronized.  This 
allows coherent processing for MIMO systems. 

In this case shown in Figure 10, each USRP device would 
provide 1-2 frontends.  Processing can be performed on each 
USRP unit, or distributed throughout the system.   

 

 

Figure 10 - Massive MIMO 16x16 

 

Figure 10 shows a 16x16 systems. In this case, data is shared 
across multiple USRPs through a daisy-chained 10 GigE 
connection.  Of course, careful consideration needs to be given 
to total bandwidth and where various portions of processing will 
occur. It is also possible to add multiple host-computers   A 
system like this might be used to apply progressive beam-
forming on a large array in an incremental fashion. 

 

Figure 11 - Massive MIMO System 

 While the example shown in Figure 10 show a system that 
relies on cascading of the 10 GigE interface to achieve 16x16 
MIMO, it is also possible to connect each device to a 10 GigE 
switch, and share information across multiple hosts.  Or, a 
hybrid approach can be used.  Strands of cascaded USRPs can 
be connected to a switch in a star configuration.  Such system 
architectures will form the basis of massive-MIMO prototyping 
systems. 

5. Conclusion 
Examination or radio transport protocols shows that they  canbe 
used to build complex processing systems, improve design re-
use, and potentially decrease development time for 
heterogeneous systems.  The compressed header format and 
routing architecture discussed in this paper have been integrated 
into third-generation USRPs, and will allow researchers to meet 
demands for increased performance in SDRs. 
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