
The Beacon OpenFlow Controller
www.beaconcontroller.net

David Erickson

Stanford

Motivation

• Back to circa 2008-2009

• The OpenFlow controller world == NOX
– Single threaded event based C++ with SWIG

glue to Python

– Python apps

– C++ apps

Great! …

• … but room for improvement

• Python

– Inconsistent API between C++/Python (SWIG)

– Significantly slower than C++

• C++

– Slow compilation

– Cryptic compilation errors (STL, templates)

– Manual memory management

– Linux only, significant list of dependencies

Questions
• Can I contribute solutions to these issues to

NOX?
– Yes to some.

– No to others due to programming language.

• Am I going to be using a controller platform for
awhile?
– Yes.

• Should I try and build one that improves on
these problems?
– Probably.

– Sigh.

One more thing…

• Other useful features

– Runtime Modularity

– Fast, Fully Multithreaded

Improvement Summary

• Language Specific

– Slow compilation

– Cryptic compilation errors (STL, templates)

– Manual memory management

– Linux only, significant list of dependencies

• Implementation

– Runtime Modularity

– Fast, Fully Multithreaded

Language Exploration

Language Fast
Compilation

Managed
Memory

Cross
Platform

High
Performance

C#

?
Java

?
Python

Why Modularity?

• Code level

– Interfaces, Implementations

• Start Time

– Select apps to run

• Run Time

What is Runtime Modularity?

• SDN Controller ~= Operating System

– Stop, Start, Install, Remove Apps at Runtime

• Uses

– Application restart

– Online App Store

– Live Updates

– Debugging

• Enabled by OSGi

Beacon

A
p

p
lic

at
io

n
s

Core

To
p

o
lo

gy

D
ev

ic
e

 M
gr

R
o

u
ti

n
g

Yo
u

r
A

p
p

!

OpenFlow

Le
ar

n
in

g
Sw

it
ch

W
e

b
 U

I

Northbound

Southbound

Your App!

PacketIn

PacketIn

Performance

Core

PacketIn

Decode

Device
Manager

Topology Routing

Thread

Thread

Thread

Applications

• Each app gets OFMessages from all threads

Read Designs
• Run to Completion

• Shared Queue

Read

QueueWrite

Shared

Queue
App 1 App 2 App 3

Read

QueueWrite

I/O Threads Pipeline Threads

Read

PipelineWrite

App 1 App 2 App 3

Read

PipelineWrite

I/O Threads

Write Designs

• Immediate

• Batched

Application:

Core (I/O Loop):

Kernel:

Application:

Core (I/O Loop):

Kernel:

- Write

Time

Performance

• Cbench

– Run on EC2, cluster compute instance

– Easily reproducible

– Throughput mode

Shared Queue Run to Completion

Immediate Beacon Imm.

Batched Beacon Queue Beacon

Read Path

W
ri

te
 P

at
h

Single Threaded Controllers

Shared Queue Run to Completion

Immediate Beacon Imm.

Batched Beacon Queue Beacon

Read Path

W
ri

te
 P

at
h

Multithreaded Controllers
12.8M

Shared Queue Run to Completion

Immediate Beacon Imm.

Batched Beacon Queue Beacon

Read Path

W
ri

te
 P

at
h

Conclusions

• Productivity++

• Runtime Modularity

• Performance

• Open Source Progeny

– 2012 – Floodlight

• http://www.projectfloodlight.org/floodlight/

– 2013 – OpenDaylight Controller

• http://www.opendaylight.org/

Questions?
www.beaconcontroller.net

David Erickson

Stanford

