

Applying NFV and SDN to LTE Mobile Core Gateways The Functions Placement Problem

Arsany Basta¹, Wolfgang Kellerer¹, Marco Hoffmann², Hans Jochen Morper², Klaus Hoffmann²

¹ Technische Universität München, Germany

² Nokia Solutions and Networks, Munich, Germany

Mobile core potential for NFV and SDN?

First migration steps? focus?

High volume data traffic

High speed packet processing

How to re-design the core gateways?

NFV → virtualized GW functions [1]

How to re-design the core gateways?

SDN → decomposed GW functions [1]

Study Goal

- Virtualize all GWs? decompose all? mixed deployment?
- Which GWs should be virtualized? decomposed? DC(s) placement?
 - minimize core load

satisfy data-plane latency

Core Data-plane Latency

- Mean packet processing latency (95% conf):
 - not considering the initial signaling latency

no. of tunnels	10	100	1 K	10 K
bit/sec	1 Mbps	10 Mbps	100 Mbps	1 Gbps
pckt/sec	83	830	8.3 K	83 K
Virtualized GW T _{proc}	62 µs	83 µs	109 µs	132 µs
Decomposed GW T _{proc}	15 µs	15 µs	15 µs	15 µs

Processing latency has **less** impact on core data-plane latency!

Core Data-plane Latency

Propagation latency depends on path SGW - PGW:

(a) Both SGW and PGW Virtualized

PGW Decomposed

(b) Both SGW and PGW Decomposed

(d) PGW Virtualized SGW Decomposed

Model and Evaluation Parameters

- Problem formulated as a MILP
- Load = $\sum_{l} capacity_{l} * length_{l} \forall l \in mobile core links$
- Presumed US topology
- First migration steps → DC(s) co-located with GWs
- Traffic demands are assumed to be uniform.
 - Time-varying traffic, check our extended work in [2]
- SDN control load as % of data-plane load

Evaluation

- How many DCs needed to virtualize all GWs?
 - keep data-plane budget: 5.3 ms

Evaluation

- If less DCs are available?
 - example placement with 3 DCs and SDN load = 10% data-plane load

Evaluation

Further Evaluation in Paper

- DC placement, no. of available DCs = 1, ..., 4
- The number of required NE and NE+ in each case
- Delay budget relaxation to 10 ms

Summary

- Virtualized + decomposed GWs result in least load overhead
- Virtualizing all GWs may not be possible due to data-plane latency budget, depending on no. of DCs
- Decomposing all GWs adds additional load on the network, depending on the SDN control load
- Operators now have a tool!

Next steps

- Integrate other core components → start with MME
- Consider control-plane latency in the tool → initial attach
- Traffic patterns influence on the placement
- Other objectives → e.g. minimize data-plane latency (5G)
- Other constraints → e.g. datacenter capacity

Applying NFV and SDN to LTE Mobile Core Gateways The Functions Placement Problem

Thank you for your attention!

Questions?