Coracle: Evaluating Consensus at the Internet Edge

Heidi Howard
University of Cambridge
heidi.noward@cl.cam.ac.uk

ABSTRACT

Distributed consensus is fundamental in distributed systems
for achieving fault-tolerance. The Paxos algorithm has long
dominated this domain, although it has been recently chal-
lenged by algorithms such as Raft and Viewstamped Repli-
cation Revisited.

These algorithms rely on Paxos’s original assumptions,
unfortunately these assumptions are now at odds with the
reality of the modern internet. Our insight is that cur-
rent consensus algorithms have significant availability issues
when deployed outside the well defined context of the data-
center.

To illustrate this problem, we developed Coracle, a tool for
evaluating distributed consensus algorithms in settings that
more accurately represent realistic deployments. We have
used Coracle to test two examples of network configurations
that contradict the liveness claims of the Raft algorithm.
Through the process of exercising these algorithms under
more realistic assumptions, we demonstrate wider availabil-
ity issues faced by consensus algorithms when deployed on
real world networks.

CCS Concepts

eComputer systems organization — Availability; Re-
dundancy;

Keywords

Distributed consensus; Fault-tolerance; Dependable systems

1. INTRODUCTION

Modern distributed systems depend on the centralised
cloud rather than deal with the complexity of the internet
edge. In the wake of censorship concerns, mass-surveillance
and data breaches, users are demanding viable alternatives
to third-party centralised systems. Building distributed sys-
tems across hosts on the internet edge is one such alterna-
tive. Such systems have the potential to provide low latency

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
(© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOL: http://dx.doi.org/10.1145/2785956.2790010

85

Jon Crowcroft
University of Cambridge
jon.crowcroft@cl.cam.ac.uk

services and the ability to operate without a full internet
connection. Ensuring consensus algorithms are resilient to
common failures at the internet edge is vital for building
reliable systems.

Paxos [2] has been synonymous with distributed consensus
for over a decade. This domain has been recently challenged
by algorithms such as Raft [4] and Viewstamped Replication
Revisited [3]. These algorithms (like many others) are diffi-
cult to use in practice as they are based on Lamport’s origi-
nal model of the internet, which is at odds with the current
reality, particularly at the internet edge.

Paxos family consensus algorithms assume homogeneous,
static hosts on a fixed, fully-connected network. Deployment
of these algorithms requires knowledgeable sysadmins with
accurate understanding of network properties and failures
are assumed to be rare.

In reality, consensus algorithms are deployed beyond the
datacenter. Here, we have heterogeneous hosts with various
resource constraints, managed by everyday people. They
are on mobile networks with unpredictable link character-
istics and poorly understood middleboxes. Networks and
hosts change over time and a diverse range of failures are
commonplace.

We could try to modify the consensus algorithms to mit-
igate these issues but these changes may in turn introduce
other issues or violate correctness.

Furthermore, consensus algorithms commonly depend on
the correct selection of various parameters (such as time-
outs for failure detection) to reach a stable state. Choosing
such values is challenging enough in a datacenter context, let
alone in a dynamic environment such as the internet edge.

2. EXAMPLES

Raft claims that consensus algorithms are fully functional
as long as any majority of the hosts are operational and can
communicate with each other and with clients.

In the two examples that follow, the majority of hosts are
live and able to communicate yet the system is unavailable
as the leadership algorithm is non-convergent. Although
these issues are common among distributed consensus algo-
rithms, we have chosen Raft to illustrate this point due to
its popularity and understandability.

In Raft, each host stores its current mode, either follower,
candidate or leader, and its current term, a monotonically
increasing value used to order events. Nodes begin as fol-
lowers and receive regular heartbeats from the leader. If a
follower fails to hear a valid leader’s heartbeat then it will
increment its term and become a candidate.


http://dx.doi.org/10.1145/2785956.2790010

follower O leader
@ nth term

Figure 1: Legend for Figures 2] and

TN
\ )candidate

~-

Figure 2: Four snapshots in time of Raft running
across five hosts with non-transitive reachability

This host will ask all the other hosts to vote for it, in-
cluding its current term in that request. A host will vote for
the candidate if its term is the same or higher than its own
and it has not yet voted in that ternﬂ If the candidate re-
ceives votes from a strict majority of hosts, then it becomes
leader in that term. Otherwise, it increments its term and
restarts the election. If a host hears from another host with
a higher term, it will step down to a follower in that new
higher term.

Figure [2] shows the reachability between 5 hosts, all hosts
are connected except the two at the bottom. Here we see
leadership bouncing between the two disconnected hosts be-
cause if one of these hosts is the leader then the other is
unable to hear the leader’s heartbeat. This causes the host
to timeout, increment its term and start a new election.
This host will likely be elected leader. The old leader will
step down to a follower when it hears about this from an-
other host. The old leader will soon timeout and start a new
election as it cannot hear from the new leader.

Figure [3] shows the reachability between 4 hosts, one of
which is behind a poorly configured NAT, allowing it to
transmit messages to all hosts but not hear responses. This
host will never be able to hear the leader’s heartbeats and
thus will continually timeout, increment its term and start
a new election. When contacting the other hosts, it will re-
move the current leader and continuously force leader elec-
tion, rendering the system unavaliable.

3. APPROACH

We have informally argued that consensus algorithms can-
not tolerate many common faults at the internet edge, but
it is difficult to systematically study and thus address these
issues, given the vast state space and complex experimental
setups required.

'Raft includes extra conditions of voting, though these de-
tails are not included for simplicity.

86

Figure 3: Four snapshots in time of Raft running
across four hosts with asymmetric reachability

In response, we developed Coracle, an event-based sim-
ulator for distributed consensus algorithms on the internet
edge. Building on our earlier work on reproducing Raft [1],
we utilize state machine replication [5] as a common inter-
mediate abstraction for consensus protocols like Raft and
Viewstamped Replication Revisited. We provide a graphical
front-end for selecting from our test suite of network envi-
ronments (like the examples in Figures [2| & [3) or users can
design their own network. In contrast to traditional network
simulators, our pure protocol implementations allow Coracle
to store a complete trace of all local state and communica-
tion. This allows it to rerun traces, run traces though a
trace checker to check safety guarantees, and extract perfor-
mance metrics. Coracle enables users to investigate the best
algorithm parameters for a particular deployment. Likewise,
users can model modifications to an existing consensus algo-
rithm (or implement a new algorithm altogether) and eval-
uate it against our test suite of internet edge environments.

Acknowledgements

We appreciate constructive feedback on this abstract from
Matthew Huxtable, Matthew Grosvenor, Mindy Preston,
Frank McSherry, Richard Mortier and Helen Oliver. Thanks
to the generous support from Microsoft.

4. REFERENCES

[1] H. Howard, M. Schwarzkopf, A. Madhavapeddy, and
J. Crowcroft. Raft refloated: Do we have consensus?
ACM SIGOPS Operating Systems Review, 49(1):12-21,
2015.

L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS),
16(2):133-169, 1998.

B. Liskov and J. Cowling. Viewstamped replication
revisited. 2012.

D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In USENIX
Annual Technical Conference.

F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR), 22(4):299-319, 1990.

2l

B3l

4]



	Introduction
	Examples
	Approach
	References



