
Network Protocol Programming in Haskell

Kazuhiko Yamamoto
Internet Initiative Japan Inc.

kazu@iij.ad.jp

1 HASKELL LANGUAGE
Over seven years, we have developed several network
protocol libraries including anti-spam, DNS, HTTP/1.1,
HTTP/2 and TLS 1.3 in Haskell. Based on these experi-
ences, we regard Haskell as a safe and highly-concurrent
network programming language thanks to its strong type
system and lightweight threads (i.e. green threads). This
paper describes advantages and disadvantages of Haskell
and reports our experiences.
Haskell is typically described as a purely functional

programming language. Unfortunately, this catch-phrase
gives programmers an impression that is difficult to ap-
proach. Roughly speaking, pure means that Haskell’s
type system clearly separates pure functions (i.e. with-
out side effects) and impure functions (i.e. with side
effects), and prevents pure functions from calling impure
functions. Functional indicates that Haskell encourages
modular programming with immutable data which pro-
vides consistency for concurrent programming.

1.1 Advantages
Haskell provides integrated data types which are sums
(e.g. union and enum) of products (e.g. struct) with
recursion. Since each member of data types has a unique
tag, the compiler can check the coverage of values. This
prevents null exceptions. The rich data types enable us to
express target problems directly and to define embedded
domain specific languages (EDSL) easily.
Each piece of Haskell code is an expression, which

means that the type of an expression can in checked
by two ways; how the expression is composed from the
inside and how it is used from the outside. Note that a
sequence of statements can be emulated by an expression
combining impure functions whose main purposes are
side-effects.
With the rich data types and strong type checking,

Haskell code works as its programmer intends in many
cases if the code compiles. The compiled code in other
compiled languages does not always run well, for in-
stance, due to null exceptions, implicit type conversions,
incomplete coverage of values, etc.
Most data types are immutable. Thus, they can be

shared by threads in a consistent manner. Impure func-
tions can make use of mutable data, such as arrays,
and immutable data can be treated as mutable data by
wrapping it with mutable references.

Glasgow Haskell Compiler (GHC) [1], the flagship
compiler of Haskell, provides lightweight threads, whose

memory overhead is around 1 KiB, based on the NxM
model. Thanks to a well-defined foreign function in-
terface (FFI), if a lightweight thread calls a blocking
external function (such as system calls), a dedicated OS
thread (native thread) takes over this procedure. Other
lightweight threads are not blocked and can continue
running on the OS thread. Lightweight threads are even
able to migrate to another low-load CPU core if multiple
cores are available. Comparing event driven program-
ming where the code is divided into handlers, lightweight
thread programming makes code straightforward and
easy to maintain.
Software Transactional Memory (STM), which pro-

vides dead-lock free locks, is seamlessly integrated. Again,
the type system distinguishes STM functions, whose side-
effects are constrained, so that the transactions can be
rolled back. Lightweight threads can share multiple locks
without suffering from dead-lock (but live-lock is still
possible).

1.2 Disadvantages
Unformtunately, Haskell has disadvantages; 1) Compile
speed of GHC is slow. As GHC provides more features,
GHC gets slower. A project to make GHC faster started
in last year. 2) Typical generated code is faster than
typical dynamic languages but is roughly 5 time slower
than that in C. 3) Cross compilation is possible but not
easy.

2 NETWORK PROGRAMMING
It is important for network servers to utilize multiple
cores and to be robust. Also, rapid prototyping is the
key to selecting proper data structures for performance
and understanding the target domain.

2.1 Multi-core utilization
The IO manager is the heart of GHC’s lightweight
threads. It multiplexes output requests from lightweight
threads to devices and dispatches arrived inputs to cor-
responding sleeping lightweight threads. Even though
GHC provides a multicore scheduler, a parallel garbage
collector and efficient multicore memory allocation, the
IO manager of GHC 7.6 and earlier did not scale to a
multicore environment. To make use of the potential of
multicores, we needed to use the prefork technique where
one process is forked for each core before the server starts
its services.



After the evolution of the IO manager in GHC 7.8
by our work [2], lightweight threads can scale to up to,
at least, 40 cores. Since the prefork technique is not
necessary anymore, we were able to remove the code
of prefork and inter-process communication for graceful
shutdown, etc.

2.2 Safe concurrency
In 2010, we were developing an anti-spam server in
Haskell, which informs a mail server about evaluation
scores based on SPF, Sender ID, DomainKeys and DKIM
through the Milter interface. First this server concur-
rently used a famous asynchronous DNS library written
in C through FFI. Unfortunately, we got a lot of asser-
tion failures in the real world operation. So, we gave up
on the asynchronous DNS library and developed a DNS
library entirely in Haskell.

All pure functions are reentrant and impure functions
in Haskell standard library are carefully designed as
thread-safe. Thanks to Haskell’s safe concurrency, our
DNS library is quite stable even under highly concurrent
environments. We received a similar experience report
from the programmer of a web-based RSS reader service
in 2013. The service was suffering from the same assertion
failures from the asynchronous DNS library in C under
100 concurrent resolvers. Switching to our DNS library,
the resolver’s behavior became much more stable.

With lightweight threads, implementation of synchro-
nous application protocols is straightforward. For in-
stance, an HTTP/1.1 server just spawns one lightweight
thread for every TCP connection and each thread repeats
the cycle of reading a request, executing a web appli-
cation and sending a response. Our high-performance
HTTP/1.1 server library, Warp [4], follows this com-
mon tactic. Our big question was whether lightweight
threads were useful for implementing an asynchronous
application protocol such as HTTP/2.

HTTP/2 redesigned HTTP/1.1’s transport while the
semantics of HTTP/1.1 (such as HTTP headers) are
preserved. Multiple frames containing requests and re-
sponses are transferred asynchronously over a single
TCP connection. We supported HTTP/2 in Warp by
using multiple lightweight threads with two queues [3].
A receiver repeatedly decodes received frames, produces
a request value, and enqueues it to an STM based in-
put queue. In a symmetric fashion, a sender repeatedly
dequeues a response value from an STM based output
queue, encodes its data to frames until the buffer is filled
or a flow control window is exhausted, sends the frames,
and if data remains to be sent, re-enqueues the response
on the output queue.

A worker thread pool is prepared between the queues.
The role of workers is to dequeue a request value from the
input queue, pass it to a web application, and enqueue

the application’s response value onto the output queue.
Even though there are other lightweight threads for
house keeping and STM values for flow control, etc, this
architecture is free from dead-lock thanks to STM.

2.3 Rapid prototyping
To deliver important content on a priority basis, priority
is defined in HTTP/2. The output queue should be a
priority queue proportional to content weights. In a few
days, we implemented 7 data structures in Haskell to
compare their performance. Our conclusion is that muta-
ble binary heaps based on arrays are a reasonable option
to implement HTTP/2’s priority queue in most program-
ming languages while immutable priority search queues
(PSQ) are suitable for highly concurrent environment
such as Haskell[3].
During the standardization process of HTTP/2 in

IETF, we explored the design space of header compres-
sion. The final specification, RFC 7541, defines a static
table, dynamic tables and Huffman encoding as com-
pression methods. Each end maintains those tables in
a synchronous manner. If a header name or a pair of
header name and value is found in a table, it can be
represented as an index number whose typical length is
7 bits. Huffman encoding shortens header names and/or
values when they are conveyed on a connection. The
draft 08 or earlier also defines the reference set which
implements difference based on index numbers.
To understand effectiveness of each method, we de-

veloped an EDSL to express compression strategies and
defined 8 strategies to cover all possible combinations of
four compression methods. This experiment uncovered
that the reference set, which is complicated and has a
special corner case, contributes little to compression ra-
tio. Thus, we proposed to remove the reference set from
the header compression. The reference set was removed
in the draft 09. This made the specification and imple-
mentations much simpler. 24.5% (704/932) lines of code
were removed from the main part of HTTP/2 library in
Haskell.

REFERENCES
[1] S. Marlow and S. Peyton Jones. The Glasgow Haskell Compiler.

In the Architecture of Open Source Applications, volume 2.

2012. http://www.aosabook.org/en/ghc.html.
[2] A. Voellmy, J. Wang, P. Hudak, and K. Yamamoto. Mio:

A High-Performance Multicore IO Manager for GHC. In
Proceedings of Haskell Symposium, 2013.

[3] K. Yamamoto. Experience Report: Developing High Per-
formance HTTP/2 Server in Haskell. In Proceedings of
Haskell Symposium, 2016.

[4] K. Yamamoto, M. Snoyman, and A. Voellmy. Warp.
In The Performance of Open Source Applications. 2013.
http://www.aosabook.org/en/posa/warp.html.

2


	1 Haskell Language
	1.1 Advantages
	1.2 Disadvantages

	2 Network Programming
	2.1 Multi-core utilization
	2.2 Safe concurrency
	2.3 Rapid prototyping

	References

