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ABSTRACT
In broadband access networks operators aim to provide
fairness among different subscribers. It cannot be provided
by commodity network switches, thus Broadband Network
Gateways (BNG) implement Hierarchical Quality of Ser-
vice, emulating network bottlenecks and performing per
subscriber weighted fair queueing at the entry point of the
access network. As the number of subscribers increases to
several thousands this solution scales badly. It needs at least
one queue per subscriber, resulting in highmemory footprint,
memory management problems and processing intensive
scheduling. Though it can still be implemented using costly,
specialized hardware, it is harder and harder to implement
it in cloud-native routers running on commodity hardware.
In this demo paper, we propose a highly-scalable solution
for this problem that can even work in cloud-native envi-
ronments. The proposed core-stateless method is based on
the the Per Packet Value concept, where edge nodes assign
Packet Values calculated based on operator policy per sub-
scriber. These markings are then used for packet scheduling
without the need of additional policy or flow information.
This demo shows how the PPV concept can provide efficient
and more scalable alternative to existing HQoS solutions
while implementing the same rich policies. The processing
and memory footprint of the proposed scheduler is indepen-
dent of the number of subscribers, while the per subscriber
packet markers can be distributed among virtual machines
as they operate independently.

1 INTRODUCTION
Standardized, deployed commodity network switches cannot
usually provide per subscriber fairness. In many cases this
is acceptable, however in access networks, specifically fixed
broadband ones, per subscriber fairness usually needs to be
enforced. In addition, a subscriber may have several internal
priority levels to be taken to account. To achieve this Broad-
band Network Gateways (BNG) implement per subscriber
Hierarchical Quality of Service (HQoS): several queues are
assigned to each subscriber and a scheduler (e.g. Weighted

Fair Queueing) is applied to them [4]. As the number of
subscribers, sub-classes and link capacities increase, HQoS
requires more and more processing and memory resources.
Though it can still be implemented using costly, specialized
hardware, it is harder and harder to implement it on cloud
routers using commodity hardware.

The Per Packet Value (PPV) concept [3, 5] provides a core-
stateless way to control resource sharing among flows. Per
subscriber and per flow policies are applied by marking a
continuous value called Packet Value (PV) on each packet.
This marking can be done independently per subscriber. The
schedulers in the network then aim at maximizing the the
total aggregate PV delivered without having any additional
flow or policy information and using a single packet buffer.

In this demo we show how our PPV implementation on a
virtual router product scales well with the increasing num-
ber of users, while it provides the desired resource sharing
among subscribers.

2 PPV-BASED BNG IMPLEMENTATION
Fig. 1 depicts the architecture of the optimized Packet Value-
based scheduler [5] that has been implemented in a cloud-
native virtual BNG product. At Packet Arrival the method
first decides whether the incoming packet is enqueued or
dropped, based on themaximum queue length and the Packet
Value composition stored in the histogram HI N which main-
tains the total number of packet bits in the queue for all
possible PVs. If the queue is full, packets already in the buffer
with smaller PV than the one of incoming packet needs to be
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Figure 1: Scheduler Implementation
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Figure 2: Demo architecture (a) and measurements (b)

dropped to make space, if possible. This is achieved by mark-
ing these packets as dropped by moving bits from histogram
HI N to a drop histogram HDROP that represents the packets
to be dropped at dequeue phase. This behavior avoids look-
ing at or dropping packets mid-queue. At Dequeue phase, the
scheduler drops packets based onHDROP , ifHDROP (PV ) > 0,
while it is possible, then serves the first packet. The optimized
implementation only drops packets upon arrival or at the
front. Further we maintain the minimum PV in HI N to be
able to decide fast whether to drop an incoming packet.

3 DEMO
We have implemented packet marking and scheduling al-
gorithms in a cloud-native virtual router implementing a
BNG [4] network function. Our prototype implementation
is a drop-in replacement of the existing Deficit Round Robin-
based Traffic Management (TM) component of the router.
The virtual router runs on an Intel(R) Xeon(R) CPU E5-2630
@ 2.30GHz host PCwith 32 GByte RAM.Moongen [2] is used
to generate the traffic for a changing number of subscribers,
always sending with 10 Gbps in total. Both the router and
the traffic generator are running on the same PC and they
are connected using a physical 10 Gbps loop between the
two ports of an Intel Niantic (82599) card as shown on Fig. 2a.
The traffic is sent to the software router, where packets are
first marked on distributed cores and scheduled on a single
core to 4 Gbps, representing the bottleneck in the access
network. Marker instances are created for each destination
IP address (modeling different subscribers). After the packet
value marking, all packets are sent to the same scheduler
core. After scheduling, the transmitted packets are sent back
to Moongen, where throughput statistics for 10-10 selected
Gold and Silver subscribers and the aggregated values are col-
lected. The queue length of the scheduler core of the router is
also queried in every second. The measurement time-series
are then shown in a real time dashboard illustrated in Fig. 2b.

In the proposed scenarios we define two policies: Gold
and Silver. The number of subscribers starts at 512 (256 Gold
- 256 Silver), we then increase those to 2000 (1000-1000) and
to 4000 (2000-2000). Two different traffic management (TM)
policy sets are defined: TM-1) until Silver subscribers receive
1 Mbps, all subscribers shall get the same throughput. Above
that Gold subscribers shall receive twice the throughput of
Silver ones. TM-2) the minimal Silver throughput is set to
128 kbps, which means that in all investigated cases Gold
subscribers shall receive twice the throughput. We measure
the throughput of 10-10 selected Gold and Silver subscribers,
5-5 of those send with twice the speed of other subscribers
to demonstrate that even when they send with higher speed
they receive the same throughput. We also measure the bulk
of the rest of Gold and Silver subscribers aggregates. These
measurements are shown on our example video [1]. Fig.
2b depicts the throughput of the selected subscribers, the
bulk throughput and the queue length, when the number
of subscribers is changing from 500 to 2000. As we increase
the number of subscribers it is visible how each subscriber,
and the aggregates, get a throughput close to its fair share.
Meanwhile, the length of the scheduler queues remains in
the same region.
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