
Data Analytics Service Composition and Deployment
on Edge Devices

Jianxin Zhao, Tudor Tiplea, Richard Mortier, Jon Crowcroft, Liang Wang

University of Cambridge

August 2018

SIGCOMM BIG-DAMA 2018

Motivation
- With social awareness of privacy and personal data rapidly rising, it becomes a pressing and

challenging societal issue to both keep personal data private and benefit from the data

analytics power of machine learning (ML) techniques.

- The currently popular cloud-based ML services are known to associate with issues such as

communication cost, latency, and personal data privacy.

- To avoid those costs, reduce latency in data processing, and minimise the raw data revealed

to service providers, many AI and ML services could be partly deployed on users’ devices at

the Internet edge rather than putting everything on the cloud.

- Use cases: automatic cars, personal data analytics in home, DNN on stick, caching, etc.

2

Motivation
Cloud-based Deployment Systems:

- Clipper, Tensorflow Serving
- “Function-as-a-Service”: AWS Lambda, OpenWhisk, ...
- Application-specific: LASER, NoScope, etc.

Edge Deployment:

- EdgeML, Azure IoT edge, AWS Greengrass, etc.

3

Motivation
Cloud-based Deployment Systems:

- Clipper, Tensorflow Serving
- “Function-as-a-Service”: AWS Lambda, OpenWhisk, ...
- Application-specific: LASER, NoScope, etc.

Edge Deployment:

- EdgeML, Azure IoT edge, AWS Greengrass, etc.

Two Challenges:

- How to re-use existing computation code?
- How to easily deploy same code on different devices?

4

Owl Numerical Library

- An experimental and above all scientific computing system.

- Designed in functional programming paradigm.

- Goal: as concise as Python yet as fast as C, and safe.

- A comprehensive set of classic numerical functions.

- A fundamental tooling for modern data analytics (ML & DNN).

- Native support for algorithmic differentiation, distributed & parallel

computing, and GPGPU computing.

5

Vision Beyond Research Prototype
Write code once, then deploy it everywhere …

66

Owl

MirageOS
Unikernel

Owl system provides us a complete set of tooling from the
powerful numerical supports in development to the deployment
on various platforms.

Reference: Wang, Liang. "Owl: A General-Purpose Numerical Library in OCaml." arXiv
preprint arXiv:1707.09616 (2017).

https://arxiv.org/abs/1707.09616
https://arxiv.org/abs/1707.09616

Owl Numerical Library
Designed and Developed by Dr. Liang Wang

Owl + Actor = Distributed & Parallel Analytics

Owl provides numerical backend; whereas
Actor implements the mechanisms of
distributed and parallel computing. Two parts
are connected with functors.

Various system backends allows us to write
code once, then run it from cloud to edge
devices, even in browsers.

Same code can run in both sequential and
parallel mode with Actor engine.

7

Reference: Wang, Liang. "Owl: A General-Purpose Numerical Library in OCaml."
arXiv preprint arXiv:1707.09616 (2017).

https://arxiv.org/abs/1707.09616

Zoo System 8

Zoo System 9

Zoo System 10

Zoo System: Service

- New abstraction: service (function)
- Gist : list of gist ids this service requires
- Types: parameter types of this service
- Dependency Graph: a graph structure that

contains information about how the service is
composed. Each node consists of gist’s name, id,
and number of parameters

- Operations of service:
- create ($): creates a dict of services from gist id
- get ($~): get a service from a dict by name
- compose ($>): combine multiple services into one

11

type t = {

 mutable gists : string array;

 mutable types : string array;

 mutable graph : (string * string *

int) Owl_graph.node;

}

val ($) : string -> (string, t)

Hashtbl.t

val ($~) : (string, t) Hashtbl.t ->

string -> t

 val ($>) : ?name:string -> t list ->

t -> t list

Zoo System: Types
type _ img =

 | PNG : string -> png img

 | JPG : string -> jpeg img

 | PPM : string -> ppm img

type _ text =

 | ENT : string -> en text

 | FRT : string -> fr text

let string_of_img (type el) (x:el img) =

 match x with

 | PNG a -> a

 | JPG a -> a

 | PPM a -> a

12

type z =

 | Z_string of string

 | Z_float of float

 | Z_int of int

 | Z_bytes of bytes

 | Z_bool of bool

 | Z_ndarray_s of Owl.Dense.Ndarray.S.arr

 | Z_ndarray_d of Owl.Dense.Ndarray.D.arr

 | Z_png_img of png img

 | Z_jpg_img of jpeg img

 | Z_ppm_img of ppm img

 | Z_en_text of en text

 | Z_fr_text of fr text

 | Z_en_voice of en voice

 | Z_fr_voice of fr voice

 | Z_list of z list

 | Z_array of z array

Zoo System: Compose
(* Basic Usage *)

#zoo

"e7d8b1f6fbe1d12bb4a769d8736454b9?vid=fc56e09e08978f62e4f1958272

53abbda4c2b40e" (* LoadImage *)

#zoo "41380a6baa6c5a37931cd375d494eb57?tol=0" (* SqueezeNet *)

(* Service Compose *)

open Owl_zoo_service

open Owl_zoo_utils

let ss1 = $ "aa36ee2c93fad476f4a46dc195b6fd89";;

let s1 = ss1 $~ "Squeezenet.infer"

let s2 = ss1 $~ "Squeezenet.to_json"

let ss2 = $ "7f32af9c1691fbfcf4f4340bd3780ee8";;

let s3 = ss2 $~ "Word_count.word_count"

let new_service = [s1] $> s2 $> s3

- Use Gist as a source of
services

- Define a service by
composing existing ones

- Version and dependency
control mechanisms vs.
OPAM

S3:v1 S4:v3

S1:v2

S:v1

S2:v4

13

Zoo System 14

Zoo System: Build
type backend =

 | CREST of CREST.backend_typ

 | JS of JS.backend_typ

 | Mirage of Mirage.backend_typ

val preprocess : backend -> string -> unit

val gen_build_files : backend -> string -> string -> unit

val build_exec : backend -> string -> unit

val postprocess : backend -> string -> unit

open Owl_zoo

open Owl_zoo_build

let gist = "aa36ee2c93fad476f4a46dc195b6fd89" in

let backend = CREST {dname = "alice/squeeznet:latest"} in

gist $@ backend

- Service development should be
separated from its deployment.

 { "Squeezenet.infer": "png_img -> ndarray",

 "Squeezenet.to_json": "ndarray -> en_text" }

- Backends:
- Container (Restful API)
- Javascript
- MirageOS

15

Evaluation: Backends 16

Evaluation: Backends 17

Application: InceptionV3 18

Top 5 Predictions:
Prediction #0 (96.20%) : giant panda,
panda, panda bear, coon bear,
Ailuropoda melanoleuca
Prediction #1 (0.12%) : lesser panda,
red panda, panda, bear cat, cat bear,
Ailurus fulgens
Prediction #2 (0.06%) : space shuttle
Prediction #3 (0.04%) : soccer ball
Prediction #4 (0.03%) : indri,
indris, Indri indri, Indri
brevicaudatus

Gist: https://gist.github.com/jzstark/ba52dc005f135cafb4d3fbc6006291bb

- One of the most complex computer vision DNN; 1000 classification categories.
- 100 LoC for the whole network structure vs. TensorFlow’s ～500 LoC.

Image: Panda Mei Xiang, Washington Post, goo.gl/vFmG82

https://gist.github.com/jzstark/ba52dc005f135cafb4d3fbc6006291bb

Application: Fast Neural Style Transfer
Combining the content of one image with the style of another image using convolutional neural networks.
Implemented with 110 LoC.

“Young American Girl, The Dance”
by Francis Picabia

19

Gist: https://gist.github.com/jzstark/f937ce439c8adcaea23d42753f487299

Image: Chicago view, from
www.usalifestylerealestate.com/illinois

https://gist.github.com/jzstark/f937ce439c8adcaea23d42753f487299

Application: Zoo Code
Fast Style Transfer:

#zoo

"f937ce439c8adcaea23d42753f487299"

FST.list_styles ();; (* show all

supported styles *)

FST.run ~style:1

"path/to/content_img.png"

"path/to/output_img.jpg"

20

Image classification:

#zoo "9428a62a31dbea75511882ab8218076f"

let img = "/path/to/your/image.png";;

let labels = InceptionV3.infer img;;

let labels_json = InceptionV3.to_json

~top:5 labels;;

let labels_tuples =

InceptionV3.to_tuples labels;;

Conclusion and Future Work
- We identify two challenges of conducting data analytics on edge: service

composition and deployment.
- To address them, we propose Zoo that 1) provides a simple DSL to enable

easy and type-safe composition, and 2) utilizes multiple backends to
accommodate different edge deployment environment.

- We show the expressiveness of Zoo with real-world use cases, and we also
evaluate performance of different backends.

- Future work: mathematical support for DSL, extend it more operations,
application in networking, engineering work.

21

Thank you! Questions?

Email: jianxin.zhao@cl.cam.ac.uk

Owl Project: http://ocaml.xyz

22

mailto:jianxin.zhao@cl.cam.ac.uk
http://ocaml.xyz

