

SCION: A Secure Multipath Interdomain Routing Architecture

Adrian Perrig
Network Security Group, ETH Zürich

SCION

SCION: Next-generation Internet Architecture

- Path-aware networking: sender knows packet's path
 - Enables geo-fencing
- Multi-path communication
 - Caution: use is highly addictive!
- Highly available communication
- Secure by construction
- BGP-free Internet communication
- Improved network operation
 - Higher network utilization
 - Advanced traffic engineering

SCION Architecture Design Goals

- High availability, even for networks with malicious parties
 - Adversary: access to management plane of router
 - Communication should be available if adversary-free path exists
- Secure entity authentication
 that scales to global heterogeneous (dis)trusted environment
- Flexible trust: enable selection of trust roots
- Transparent operation: clear what is happening to packets and whom needs to be relied upon for operation
- Balanced control among ISPs, senders, and receivers
- Scalability, efficiency, flexibility

SCION Overview

- Control plane: How to find end-to-end paths?
 - Path exploration
 - Path registration
- Data plane: How to send packets
 - Path lookup
 - Path combination
- Deployment
- Demos

Approach for Scalability: Isolation Domain (ISD)

- Isolation Domain (ISD): grouping of ASes
- ISD core: ASes that manage the ISD
- Core AS: AS that is part of ISD core
- Control plane is organized hierarchically
 - Inter-ISD control plane
 - Intra-ISD control plane

Intra-ISD Path Exploration: Beaconing

- Core ASes K, L, M initiate
 Path-segment Construction
 Beacons (PCBs), or
 "beacons"
- PCBs traverse ISD as a flood to reach downstream ASes
- Each AS receives multiple PCBs representing path segments to a core AS

PCB Contents

- A PCB contains an info field with:
 - PCB creation time
- Each AS on path adds:
 - AS name
 - Hop field for data-plane forwarding
 - Link identifiers
 - Expiration time
 - Message Authentication Code (MAC)
 - AS signature

Inter-ISD Path Exploration: Sample Core-Path Segments from AS T

Up-Path Segment Registration

- AS selects path segments to announce as up-path segments for local hosts
- Up-path segments are registered at local path servers

Down-Path Segment Registration

- AS selects path segments to announce as down-path segments for others to use to communicate with AS
- Down-path segments are uploaded to core path server in core AS

Ingress and Egress Interface Identifiers

- Each AS assigns a unique integer identifier to each interface that connects to a neighboring AS
- The interface identifiers identify ingress/egress links for traversing AS
- ASes use internal routing protocol to find route from ingress SCION border router to egress SCION border router
- Examples
 - Yellow path: L:4, O:3,6, R:1
 - Orange path: L:5, O:2,6, R:1

SCION Overview

- Control plane: How to find end-to-end paths?
 - Path exploration
 - Path registration
- Data plane: How to send packets
 - Path lookup
 - Path combination
- Deployment
- Demos

Path Lookup

- Steps of a host to obtain path segments
 - Host contacts RAINS server with a name

H → RAINS: www.scion-architecture.net

RAINS → H: ISD X, AS Y, local address Z

Host contacts local path server to query path segments

 $H \rightarrow PS: ISD X, AS Y$

PS → H: up-path, core-path, down-path segments

 Host combines path segments to obtain end-to-end paths, which are added to packets

Path Lookup: Local ISD

- Client requests path segments to <ISD,
 AS> from local path server
- If down-path segments are not locally cached, local path server send request to core path server
- Local path server replies
 - Up-path segments to local ISD core ASes
 - Down-path segments to <ISD, AS>
 - Core-path segments as needed to connect up-path and down-path segments

Path Lookup: Remote ISD

- Host contacts local path server requesting <ISD, AS>
- If path segments are not cached, local path server will contact core path server
- If core path server does not have path segments cached, it will contact remote core path server
- Finally, host receives up-, core-, and down-segments

Path Construction

SCION Overview Summary

 Complete re-design of network architecture resolves numerous fundamental problems

- BGP protocol convergence issues
- Separation of control and data planes
- Isolation of mutually untrusted control planes
- Path control by senders and receivers
- Simpler routers (no forwarding tables)
- Root of trust selectable by each ISD
- An isolation architecture for the control plane, but a transparency architecture for the data plane.

Outline

- Control plane: How to find end-to-end paths?
 - Path exploration
 - Path registration
- Data plane: How to send packets
 - Path lookup
 - Path combination
- Deployment
- Demos

Deployment @ ETH

SCION-IP Gateway (SIG) Deployment

Carrier-grade SIG Supports SCION Devices

ETH zürich

(not publicly routed)

Not SCION aware

SCION border router

SIG

Carrier-grade SIG

How to make this work?

- SIG handles legacy IP traffic
 - If destination is reachable through SCION, encapsulate IP packet and send it to remote SIG over SCION network
 - Otherwise, send packet through IP
- Carrier-Grade SIG (CG-SIG) handles all traffic to destination
 - NAT for destination network
 - Destination is not publicly reachable DDoS defense
 - Destination does not need to establish an AS

SCIONLab

Global SCIONLab Network

- https://www.scionlab.org
- Collaboration with David Hausheer @ Uni Magdeburg

Use Case: Internet Backup through SCIONLab

Commercial SCION Network

- Deutsche Telekom, Swisscom, SWITCH, Init7 offer SCION connections (as test) on a commercial SCION network
- Several banks and Swiss government are running trial deployments
 - One large bank has been running production traffic over SCION since August 2017

How to obtain a SCION Connection?

- Individual: SCIONLab https://www.scionlab.org
 - SCION AS running on VM within 10 minutes
- University, research lab
 - SWITCH, DFN can (soon) provide SCION connections
 - David Hausheer @ Uni Magdeburg has set up SCION VMs at GEANT < hausheer@ovgu.de>
- Corporation, Government entity
 - Swisscom
 - Deutsche Telecom < <u>markus.seipel@telekom.de</u>>

Conclusions

- It is possible to evolve Layer 3: SCION is a secure Internet architecture that we can use today
- Strong properties for high-availability communication
 - Multipath routing architecture offers multitude of path choices for meaningful diverse path selection
 - For some cases, lower latency than in today's Internet
 - Fast failover providing business continuity
 - Prevention of routing attacks
 - Built-in DDoS defense mechanisms

SCION Commercialization

- Founded Anapaya Systems in June 2017
- 4 founders: David Basin, Sam Hitz (CEO), Peter Müller, Adrian Perrig
- Several banks and ISPs are customers
- https://www.anapaya.net

Online Resources

- https://www.scion-architecture.net
 - Book
 - Papers
 - Videos
 - Tutorials
 - Newsletter signup
- https://www.scionlab.org
 - SCIONLab testbed infrastructure
- https://www.anapaya.net
 - SCION commercialization
- https://github.com/scionproto/scion
 - Source code

SCION Core Project Team

- Netsec: Daniele Asoni, Laurent Chuat, Sergiu Costea, Piet De Vaere, Sam Hitz, Mike Farb, Tobias Klausmann, Cyrill Krähenbühl, Jonghoon Kwon, Tae-Ho Lee, Sergio Monroy, Chris Pappas, Juan Pardo, Adrian Perrig, Benjamin Rothenberger, Stephen Shirley, Jean-Pierre Smith, Brian Trammell
- Infsec: David Basin, Tobias Klenze, Ralf Sasse, Christoph Sprenger, Thilo Weghorn
- Programming Methodology:
 Marco Eilers, Peter Müller
- Uni Magdeburg: David Hausheer

Thanks to all our Collaborators!

Thanks to our Sponsors!

