ARTEMIS: Neutralizing BGP Hijacking within a Minute

Pavlos Sermpezis

INSPIRE group (Prof. Xenofontas Dimitropoulos) FORTH, Greece

ERC Networking Symposium, SIGCOMM 2018

The "ERC history" of ARTEMIS

- ERC NetVolution project
 - o 2014 2019
 - Starting grant, Prof. Xenofontas Dimitropoulos (<u>www.fontas.net</u>)
 - Objective: innovation in the Internet routing system.
- ERC (PoC) PHILOS project
 - o 2019 2020
 - Proof of Concept (PoC) grant
 - Objective: prefix hijacking defense system, aka. ARTEMIS

The history of ARTEMIS

- [2016] BGP hackathon, CAIDA, UC San Diego
- [2016] Demo, SIGCOMM 2016
 - "ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking".

- [2018] ACM SIGCOMM CCR Editorial
 - "A survey among Network Operators on BGP Prefix Hijacking"
- [2018] ACM/IEEE Transactions on Networking
 - "ARTEMIS: Neutralizing BGP Hijacking within a Minute"

The Internet today...

HACKER REDIRECTS TRAFFIC FROM 19 INTERNET PROVIDERS TO STEAL BITCOINS

BGP prefix hijacking

- Impact: service outages & traffic interception
 - Affect million of users
 - Last for hours
 - Can cost 100s of thousands of \$\$\$ (or more) per minute

How do people deal with hijacks today?→ RPKI

- X Only 8% of prefixes covered by ROAs [1]
- X Why? → limited adoption & costs/complexity [2]

Reasons for not using RPKI [2]

How do people deal with hijacks today? → 3rd parties

- X Comprehensiveness: detect only simple attacks
- X Accuracy: lots of false positives (FP) & false negatives (FN)
- X Speed: manual verification & then manual mitigation
- X Privacy: need to share private info, routing policies, etc.

How much time an operational network was affected by a hijack [1]

Our solution: ARTEMIS

- Operated in-house: no third parties
- Real-time Detection
- Automatic Mitigation
- ✓ Comprehensive: covers all hijack types
- ✓ Accurate: 0% FP, 0% FN for most hijack types; low tunable FP-FN trade-off for remaining types
- ✓ Fast: neutralizes (detect & mitigate) attacks in < 1 minute</p>
- Privacy preserving: no sensitive info shared
- ✓ Flexible: configurable mitigation per-prefix + per-hijack type

ARTEMIS: Visibility of all impactful hijacks

Public BGP monitor infrastructure

- RIPE RIS, RouteViews, BGPStream
- ~500 vantage points worldwide (BGP routers)

Simulation results on the AS-level graph [1]

ARTEMIS: real-time monitoring, detection in 5 sec.!

Real experiments in the Internet [1] (PEERING testbed)

BGP prefix hijacking taxonomy

- Hijack types 3 dimensions:
 - Affected prefixes: prefix or sub-prefix or squatting
 - Data-plane:
 blackholing or imposture or man-in-the-middle
 - AS-path manipulation: Type-0 or Type-1 or ... or Type-N

```
Legit announcement: <my prefix, MY AS>
```

```
Type-0 hijack: <my_prefix, BAD_AS, ...>
```

```
Type-1 hijack: <my_prefix, MY_AS, BAD_AS, ...>
```

Type-2 hijack: <my_prefix, MY_AS, MY_PEER, BAD_AS, ...>

• ...

Type-N hijack: <my_prefix, MY_AS, ..., BAD_AS, ...>

Type-U hijack: <my_prefix, unaltered_path>

Prefix

ARTEMIS: detection of <u>all</u> hijack types (vs. literature)

TABLE 1: Comparison of BGP prefix hijacking detection systems/services w.r.t. ability to detect different classes of attacks.

Class of	Hijacking A	ttack	Control-	plane System	/Service	Data-plane S	System/Service	Hybi	rid System/Se	rvice
Affected prefix	AS-PATH (Type)	Data plane	ARTEMIS	Cyclops (2008) 21	PHAS (2006) [36]	iSpy (2008) [68]	Zheng <i>et al</i> . (2007) [70]	HEAP (2016) 57	Argus (2012) 60	Hu et al. (2007) [32]
Sub	U	*	✓	×	×	×	×	×	×	×
Sub	0/1	BH	√	×	✓	×	×	✓	✓	√
Sub	0/1	IM	√	×	✓	×	×	√	×	√
Sub	0/1	MM	✓	×	✓	×	×	×	×	×
Sub	≥ 2	BH	✓	×	×	×	×	✓	✓	✓
Sub	≥ 2	IM	√	×	×	×	×	√	×	√
Sub	≥ 2	MM	√	×	×	×	×	×	×	×
Exact	0/1	BH	√	✓	✓	√	×	×	✓	√
Exact	0/1	IM	✓	✓	√	×	✓	×	×	√
Exact	0/1	MM	√	✓	✓	×	√	×	×	×
Exact	≥ 2	BH	√	×	×	√	X	×	√	√
Exact	≥ 2	IM	√	×	×	×	✓	×	×	√
Exact	≥ 2	MM	✓	×	×	×	✓	×	×	×

Detection methodology details → **in the paper [1]**

ARTEMIS: <u>accurate</u> detection

	Hija	cking Attack			
	Prefix	AS-PATH	Data	False	False
		(Type)	Plane	Positives (FP)	Negatives (FN)
(Sub-prefix	*	*	None	None
	Squatting	*	*	None	None
	Exact	0/1	*	None	None
	Exact	≥ 2	*	< 0.3/day for > 73% of ASes	None
	Exact	≥ 2	*	None for 63% of ASes $(T_{s2} = 5min, th_{s2} > 1 \text{ monitors})$	< 4%

- With the ARTEMIS approach, detection becomes trivial for most attack types!
 - Zero FP and FN
- Hijack for <u>exact prefix</u> & <u>fake link 2 hops or more from origin</u>
 - Hard problem
 - ARTEMIS detection algorithm: past data + impact estimation
 - Low FPs & Zero FNs
 - o ... or (configurable) trade-off: even less FPs for a few (potential) FNs with low impact

ARTEMIS: mitigation methods

ARTEMIS proceeds automatically to mitigation:

- (Option 1) DIY: react by de-aggregating if you can
- (Option 2) Get help from other ASes
 - o e.g., for /24 prefixes
 - announcement (MOAS) and tunneling from helper AS(es)

Percentage of polluted ASes when mitigation an exact-prefix hijack without or with outsourcing to large ISPs or DoS mitigators

	without	top	П					
	outsourcing	ISPs		AK	CF	VE	IN	NE
Type0		12.4%						
Type1	28.6%	8.2%		0.3%	0.8%	0.9%	2.3%	3.3%
Type2	16.9%	6.2%		0.2%	0.4%	0.4%	1.3%	1.1%
Type3	11.6%	4.5%		0.1%	0.4%	0.3%	1.1%	0.5%

ARTEMIS: automated mitigation = fast mitigation

1 min.

hours/days

Summarizing ...

- ARTEMIS: a BGP prefix hijacking defense system
 - based on needs of operators (what and how)
 - no 3rd parties, fast, accurate, comprehensive, flexible, privacy preserving
- Neutralize BGP hijacking in <u>1 minute</u>!
 - Current practices take hours (or even days)
- Ongoing work: Open-source ARTEMIS
 - Co-designed & tested with network operators

work by INSPIRE group (FORTH) & CAIDA:

Pavlos Sermpezis, Vasileios Kotronis, Alberto Dainotti, Alistair King, Petros Gigis, Dimitris Mavrommatis, Xenofontas Dimitropoulos

