

On Secure Positioning (Project CSP: Cross-Layer Design of Secure Positioning)

Srdjan Čapkun

ETH zürich

we need secure distance measurement

need to know where <u>other</u> objects/people are

need to know where we are

need to know where <u>other</u> objects/people are

need to know where we are

securely

SHARE

755

SARAH SCOLES SCIENCE 03.02.18 08:00 AM

SPOOF, JAM, DESTROY: WHY WE NEED A BACKUP FOR GPS

The 24 satellites that keep GPS running in the US aren't especially secure.

until now no <u>fully</u> secure distance measurement or positioning systems

until now no <u>fully</u> secure distance measurement or positioning system

[so we decided to build one at ETH]

new radio IC
low power
provably secure
precise
fast

Securing distance measurement: Measure the distance between V and P + Authenticate Messages?

Insecure schemes:

NON-Time-of-Flight

NFC / RFID (e.g., ISO)

RSSI measurement (e.g., WiFi, Bluetooth, 802.15.4)

Phase (multi-carrier) measurement (e.g., Atmel AT86RF233)

FMCW (Frequency-Modulated Continuous-Wave)

AoA (Angle of Arrival) measurement (e.g., Bluetooth 5.0)

Time-of-Flight

Chirp Spread Spectrum (802.15.4a, ISO/IEC 24730-5, NanoLOC)

Ultra Wide Band (UWB)

802.15.4 UWB

Only provably secure:

802.15.4z LPR single pulse per bit UWB-PR multi-pulse per bit [Singh17]

High Power Device

Low Power Device

common assumption in distance bounding research:

only short (UWB) pulses and rapid bit exchange are secure we showed [2017] that this is wrong

distance bounding can be done using longer symbols (we fully implemented it)

Most secure distance measurement schemes => distance cannot be shortened by the attacker

This is sufficient to build SECURE POSITIONING

Long Term Goal: widely deployed secure positioning infrastructure

Standardization:

802.15.4z (UWB)

- Interact with relevant partners
- Increase adoption

But RF is not the only sensing modality

SoundProof: Non-Interactive Online Authentication

SoundProof: Non-Interactive Online Authentication

it is time to "de-virtualize"

we need to "get physical" again to ...

it is time to "de-virtualize"

we need to "get physical" again to ...

... secure existing systems

... enable deployment of new systems

ZISC Information Security & Privacy Center

www.securepositioning.com

capkuns@inf.ethz.ch

European Research Council

Acknowledgements (in random order):

- Mridula Singh (ETH Zurich)
- Patrick Leu (ETH Zurich)
- Aanjhan Ranganathan (NorthEastern)
- Boris Danev (3DB)
- David Barras (3DB)
- Nils Tippenhauer (CISPA/Helmholtz)
- Kasper Rasmussen (Oxford)
- Christina Popper (NYU AD)
- Nikos Karapanos (Futurae)
- Claudio Soriente (NEC)
- Claudio Marforio (Futurae)
- Hildur Olafsdottir