Symbolic Analysis
of Networked Systems

Klaus Wehrle
Joint work by the COMSY'S team

http://comsys.rwth-aachen.de klaus@comsys.rwth-aachen.de

RWTH "CHon
SYs UNIVERSITY

Challenges in Softwarized Communication Systems

e Software plays an increasingly important role in networking

» Protocols, billions of apps, etc.

» Network elements become flexible (SDN, NFV, In-network processing)
¢ Important: Analysis of real code — not models

Sensors
Actuators

Networked Systems (protocols, apps) Latency-critical networked control

Goal: devise a new methodology for
Software Analysis of Interacting Systems?

Rigorous, automated and effective!

RWTH/ el .
UNIVERSITY

Co
SYS

State of the Art in Distributed Systems Testing

Testbeds, Prototypes
Emulation

@

Automatism §§
Coverage ®
Effectiveness

Random testing Simulation

(@ model)
/(?X e

Automatism &’ Automatism $§
Coverage #® Coverage ®
Effectiveness J Effectiveness J

e

Model-based proofs

(@ model)

Automatism
Coverage v 4
Effectiveness «"

[com]
SYS

RWTH "CHon
UNIVERSITY

http://comsys.rwth-aachen.de

s
SYS

RWTH "CHon
UNIVERSITY

Traditional
Symbolic Execution

Symbolic Execution: A Simple Example

e B
int get_range(int x) {

if (x == 0)
return blue() ;
if (x < 50) {
if (x > 10)
return red() ;

int x = symbolic_input();

- x may be any value

if (x == 0)

if (x < 50)

return green(); x = 50

x # 0 && x < 50
} if (x > 10) o
return ()

x> 10 && x < 50 x<10&&x#0

N\ J
- - . st1:x =0
But, is Symbolic Execution able st2:x = 22
st3:x =5
to analyze networked systems? i4ix = 99
RWTH 5
SYS

Symbolic Execution and Networked Systems

e Symbolic analysis of networked systems?

() Additional influence factor:

- Consider packets as additional input

\
_p)

SYS

RWTH 6

Symbolic Execution and Networked Systems

e Symbolic analysis of networked systems?

Additional influence factor:
- Consider packets as additional input
@ - It may arrive at various/any times

.. —

-
—
LI

Need for a rigorous analysis of

\ any input at any time J
RWTH ./ CHEN)
UNIVERSITY

Symbolic Analysis
of Network Input

http://comsys.rwth-aachen.de

RWTH "CHon
sYs UNIVERSITY

Symbolic Execution of Networked Systems

e Symbolic analysis of network input

N
Branching within a node 1
~—— causes branches in all other nodes 2

10

SDE: State Explosion

¢ Test scenarios
» Grid with n? nodes (example: 49)

Q@ Destination

» Transmissions via a static path
» Symbolic network failures

» 10s simulated time
Source

¢ Results using the conservative approach (49 nodes)

10°

1 6

o

The basic implementation of
the formal model of SDE is not scalable
10! - e/

10° 10* 102 10° 10* 10° 10! 102 10° 10*
execution time [s] (log scale) execution time [s] (log scale)

g scale)

—

. [COB fin
. [COB fin|

o
)

Co
SYS

SDE: Elimination of Redundant States

11

® Test scenarios Destination
» Grid with n? nodes (example: 49)
» Transmissions via static path
» Symbolic network failures
» 10s simulated time
Source e @ @ o
¢ Results using conservative and lazy forking algorithms
10° — COB‘ i States i i 10° — COB‘ RAM
i l-— sps /_/ g
§1104 o §10“ /_’/\
. Significant elimination of duplicates
¢ enables much more scalable analyses
P4 SN g
1020" 10 ;/;)’ 10° 10 U105 1010" 10" 10;n 10° 10* U105
execution time [s] (log scale) execution time [s] (log scale)
RWTH 12
SYS

Infinite Loop Detection
Symbolic Analysis
of Protocol Loops

http://comsys.rwth-aachen.de

RWTH "CHon
SYS UNIVERSITY

Liveness of a Protocol - Infinite Loop Detection

e Why are infinite loops an issue with protocols?
» The outmost (protocol) loop should run infinitely (intended loop)
» The input handler should always finalize (non-intended loop)
» Infinite inner loop is a bug

e When is a loop infinite?
» If it comes to the same state, again and again!
B maybe with (different) intermediate steps
e When is a loop erroneous
» If it does not consume any input any more?

¢ How can we detect re-occurring same states?

Source: baynote.com

RWTH “CHEn 14
UNIVERSITY

Co
SYS

Efficient Implementation of Same State Detection

e Two states are the same if all their memory is the same
» Including call stack and instruction pointer

e Compare each new state Sy to all its predecessor states
» How can this be achieved efficiently?

()

1l bool x = false;

memcmp (NULL1, NULL2, OxFF..FF);
» For every predecessor state

» Naive implementation is
prohibitively expensive!

AL

2 x = true;

3 while (x) { | S, T
4 X = true; i S; l»/ @
5 }
_ J
RWNTH 15

SYS

Efficient Implementation of Same State Detection

* Two states are the same if all their memory is the same
» Including call stack and instruction pointer

e Compare each new state Sy to all its predecessor states
» How can this be achieved efficiently?

4)

] — Efficient same state detection?
1 bool x = false; » Compare hashes instead of states

r

» Hash after blocks, not instructions
2 x = true;

o
3 while (x) { ,@-»uz E E]
i) (n)

4 X = true;

5 1}
- Y,
RWTH 16

SYS

Efficient Implementation of Same State Detection

e Two states are the same if all their memory is the same
» Including call stack and instruction pointer

e Compare each new state Sy to all its predecessor states
» How can this be achieved efficiently?

e N
("] — Efficient same state detection?
1 bool x = false; » Compare hashes instead of states
Ho » Hash blocks, not instructions
2 x = true; » Compute hashes iteratively
I N J
3 while (x) { H,)
4 x = true; Hs @
5 1}
_ J
RWTH 17
SYS

e So far, a total of seven previously undetected bugs were detected
» Five bugs in the GNU Coreutils
B e.g.in “tail”: 130 line while (1) loop calling 2 functions

» Two bugs in busybox

B e.g.Ina490 line while (1) loop calling 2 functions
» All bugs have been reported, confirmed and fixed
» The coreutils bugs have existed for over 12 years!

SYS

RWTH 18

The Next Challenge
Symbolic Analysis
of Temporal Uncertainty

http://comsys.rwth-aachen.de

RWTH "CHon
SYS UNIVERSITY
(")

t

A 4 v

_ _J
f Analyzing uncertain event times — Why is time so important?)
» State of system at arrival time of input determines the behavior
» Rigorous analysis requires analysis of all points in time!
» Moreover, time is continuous - not discrete!
L J

()
t Challenge:
_ v Automatic Generation of)
- Temporal Equivalence Classes —————
Symbolic Time: Symbolic analysis of uncertain event times
Problems Challenges
» Time is continuous — not discrete - How to derive temporal equival. classes?
» Temporal dependencies in code - How to detect them?
» Deriving all combinations and dependencies - How to make sure to consider all cases?
RWNTH 21
SYS

Challenges in Softwarized Communication Systems

¢ Trend: Software plays an increasingly important role in networking
» Protocols, billions of apps, etc.

» Network elements become flexible (SDN, NFV, In-network processing)
¢ Important: Analysis of real code - not models

()

Sensors
Actuators

Networked Systems (protocols, apps)

Latency-critical networked control

Reliability! ~ Predictable?
(bugs, loops) - (performance, resources)

SYS

22

Symbolic Analysis
of Protocol / NF Performance

http://comsys.rwth-aachen.de

RWTH "CHon
SYS UNIVERSITY

Performance Prediction of Softwarized Network Functions

¢ Challenge: Prediction of Processing Effort/Time of a NF

» Necessary processing resources? Rate [Million pkt/s]
3 2

1.2

» Expected/worst latency? 5.0M] ~ Rate: 5M pkt/s
) l Rate: 2.5M pkt/s
> Achievable data rate? &+ 0M
X30M
» Influence among NFs? = -
22.0M —~——
» Are we under attack? = oM B e
> ... 0.0M

0 250 500 750 1000 1250 1500 1750 2000 2250
CPU Cycles

Achieved throughput per processing effort of a NF

¢ Influence Factors
» Code of the NF
» Input Traffic (Pattern, Volume)
» CPU Execution

B Superscalar execution
B Branch prediction

® Caching
RWTH ey o4
SYS UNIVERSITY

Pre-Deployment Performance Prediction of On-Path NFs

e) i
Network Function Code Performance- & Analysis-Feedback Performance

Predictions

t, uints_t, blocked dports, 4096);

Instruction-
e e Cache- &
' CPU-Model

Traffic
m Pattern

sk buff *skb) {

G /

y "\
- Z N H
Symbolic S = Fix .
y \ | W Prediction R | ”
Analysis I 1 bugs
| | Zom 0505
- N - ~ o1
Instruction Chains LR
all 1 1.00
Analysis
br 0500
of Paths s e
l[: B w @
CPU Cycles
[measure 10
E = 075u
Eons oG
e 025
o 100 o 30
CPU Cycles
N\ / N\ /
RWTH -
SYS

Challenges in Softwarized Communication Systems

¢ Trend: Software plays an increasingly important role in networking
» Protocols, billions of apps, etc.
» Network elements become flexible (SDN, NFV, In-network processing)

¢ Important: Analysis of real code - not models

()

Sensors
Actuators

Networked Systems (protocols, apps) Latency-critical networked control
Reliability! Predictable!
(bugs, loops) (performance, resources)
RWTH 26
sYsS

Symbolic Analysis
of Networked Systems

Klaus Wehrle
Joint work by the COMSY'S team

