

Efficient Networking in Millimeter Wave Bands

ERC Networking Symposium Budapest, August 24, 2018

Joerg Widmer, Research Professor IMDEA Networks, Madrid, Spain

Developing the Science of Networks

IMDEA Networks

- International research center in network science and technology
 - Located in Madrid, Spain
 - ~50 researchers from 15 countries
 - Focus on top quality
 research with emphasis
 also on tech transfer

- Wireless Networking Group
 - 3 postdocs
 - 6 PhD students
 - 1 project administrator
 - 1 research engineer
 - Several interns

SEARCHLIGHT

- ERC Consolidator Grant (2014 2019)
- Focus on local area networks based on 60 GHz communication
 - Studies new communication paradigms for very high speed networks
 - Addresses spectrum scarcity and exponential growth of wireless data
- Challenging characteristics
 - High signal absorption often allows only for LOS channels
 - Directional communication using beamforming mechanisms
- Vision: many dedicated wireless point-to-point channels
 - Vast number of APs
 - Complex medium sharing
 - Accurate device tracking
 - Large managed deployments

Move to Higher Frequencies is Inevitable

- Many GHz of spectrum available at mm-wave frequencies
 - Multi-Gbit/s per user to support rapid increase in wireless traffic
 - Recent release of 7 GHz of unlicensed mm-Wave spectrum around 60 GHz
- Very high levels of spatial reuse
 - Highly directional antennas needed to achieve reasonable communication distance
 - Low interference (through side lobes)

Mm-Wave Related Problems

Millimeter-wave communication is not easy

- High frequency related path loss
- Most materials block the signal
- Communication primarily line-of-sight
- Directional antennas need to be aligned
- RF design much harder at these frequencies

- Mm-wave links are brittle and break easily
- How to design fast, reliable, low latency networks?

Challenges

- Fast beam training
 - With many devices
- Quickly detect outage or blockage
- Support fast switching
 - Devices with multiple antenna arrays
 - Maintain multiple alternative mm-wave paths
 - Use multiple RF technologies (at different frequencies)
- Without incurring excessive overhead!
 - Many small cells, very frequent handovers between BS or technologies, Gbit/s streams, ms latency requirements

Lack of Good Experimental Platforms

Available Off-the-Shelf Hardware

- TP-Link Talon AD7200 as research platform
 - Tri-band IEEE 802.11 router (2.4GHz, 5GHz, 60GHz)
- Ported OpenWRT/LEDE to Talon router and hacked the firmware of the 802.11ad mm-wave interface
 - Based on nexmon framework for binary firmware patching
 - Full access to the embedded Linux
 - AP, client, and monitor mode
 - Access to beam training
 - https://github.com/seemoo-lab/talon-tools

*Joint work with TU Darmstadt

Daniel Steinmetzer et al., "Compressive millimeter-wave sector selection in off-the-shelf IEEE 802.11ad devices", ACM CoNEXT, Dec. 2017

Implementing Compressive Beam Training

- 802.11ad beam-training probes 34 antenna patterns sequentially
- Instead: can exploit sparseness of mm-wave multipath channel
 - Sparse estimation problem, no need to train all possible antenna patterns
 - Probe subset of antenna patterns, record signal strength

- Multiply received signal strength values with beam patterns and add them
- Select the beam pattern that has the highest gain in the estimated angle
- Probing 14 out of 34 sectors is sufficient → training time reduced by factor of 2.3

Daniel Steinmetzer et al., "Compressive millimeter-wave sector selection in off-the-shelf IEEE 802.11ad devices", ACM CoNEXT, Dec. 2017

Zero Overhead Tracking

- Necessary to continuously maintain alignment after initial training
- Idea: use two-lobe beam pattern with different phases per beam during part of the packet preamble to detect movement and rotation
- Comparing first and second half of preamble reveals orientation

Adrian Loch et al., "Zero overhead device tracking in 60 GHz wireless networks using multilobe beam patterns", ACM CoNEXT, Dec. 2017

60 GHz Testbed Setup

- Collaboration with IMEC (Belgium)
- Signal generator, oscilloscope, IEEE 802.11ad compliant frontend, control PC

Adrian Loch et al., "Zero overhead device tracking in 60 GHz wireless networks using multilobe beam patterns", ACM CoNEXT, Dec. 2017

Evaluation Results

- One node rotates according to real-world gyroscope traces
- Automatic beam-steering adjustment based on correlation output
- Steering error always below 5° which results in up to 2x throughput gain

Adrian Loch et al., "Zero overhead device tracking in 60 GHz wireless networks using multi-lobe beam patterns", ACM CoNEXT, Dec. 2017

"Quasi-Optical" Mm-Wave Channels

- Sparse multi-path environment; LOS path, maybe 1st and 2nd order reflections (sometimes more)
- Position/movement of communication devices can be used to steer the antenna array
- Positions of obstacles allow to infer which paths are blocked
- Positions of obstacles/walls allow to infer which reflected paths are available

mmWave Location System

- Angle of arrival/departure information from the beamtraining can be used for accurate location system
 - Use compressive beam training idea to get AoA from beam patterns
 - But: need to estimate multiple paths, not just the strongest
- Exploit sparse multi-path channel at mm-wave
 - High attenuation typically allows only for first- or second-order reflections
 - Signals arriving at a receiver can be easily traced back to transmitter

Alain Olivier et al., "Lightweight indoor localization for 60 GHz millimeter wave", *IEEE SECON*, June 2016

Localization Algorithm

- Joint Anchor and Device location Estimation (JADE)
 - Location system based only on angle difference information
- High level overview
 - Reflections are transformed into vectors departing from the position of the virtual anchor
 - Iterate over unknown position of terminal and unknown positions of anchors
 - Needs user mobility over time

Joan Palacios et al., "JADE: Zero-knowledge device localization and environment mapping for millimeter wave systems", *IEEE Infocom*, May 2017

Localization Results

- Unknown access point (AP) locations, unknown floor plan, only angle
- Learn: make use of history of locations for refinement
- Outperforms even algorithms that assume floor plan and APs are known!

Simultaneous Location and Mapping

Joan Palacios et al., "JADE: Zero-knowledge device localization and environment mapping for millimeter wave systems", *IEEE Infocom*, May 2017

Preview: Custom Beamforming on COTS Devices

- IEEE 802.11ad uses a pre-determined codebook for beamforming (and brute-force beam training)
- Custom (SNR maximizing) beam patterns would significantly improve performance (as well as AoA estimation, etc.)
- Current 802.11ad routers allow to modify the codebook, but designing custom patterns requires CSI, which the routers do not provide
- Idea: generate a codebook that allows to measure the channel and then add custom CSI-based beam patterns to the codebook

Joan Palacios et al., "Adaptive Codebook Optimization for Beam-Training on Off-The-Shelf IEEE 802.11ad Devices", ACM Mobicom, October 2018

Amplitude and Phase of the Antenna Elements

- Use transmit antenna patterns which enable measured antenna element (red) with different phase shifts and an arbitrary reference element (blue)
- Requires four measurements
- Additional mechanism for low SNR (where signals from a single element cannot be decoded)
- To reduce overhead, determine the most important antenna elements and only measure those

Joan Palacios et al., "Adaptive Codebook Optimization for Beam-Training on Off-The-Shelf IEEE 802.11ad Devices", ACM Mobicom, October 2018

Performance Gains

- Average gains: 2.5× higher SNR, 2× higher throughput; much better NLOS coverage
- With the array factor we can generate fully custom beam shapes

Joan Palacios et al., "Adaptive Codebook Optimization for Beam-Training on Off-The-Shelf IEEE 802.11ad Devices", ACM Mobicom, October 2018

Modular design

i**M**dea networks

Short Glance at Further Work

- Hybrid beamforming, beam pattern design, ...
- MAC design, coordination, fairness, frame aggregation, ...
- Efficient backhaul: quickly switching Gbit/s streams between base stations and/or technologies is not trivial
- Low latency mm-wave networks (bufferbloat!)
- Efficient transport (TCP issues with wireless)
- Network management and control in very large, very dense mm-wave AP deployments
- IEEE 802.11ad implementation in ns-3
- Full bandwidth 802.11ad on FPGA

Final Remarks

- Extremely promising area, data rates of tens of Gbit/s feasible
 - In the future: >100 GHz to THz systems
- Conventional wireless network paradigms don't work well
 - Very directional, little interference, high levels of spatial reuse
 - Fragile links, very high network dynamics (for mobile networks)
- Mm-wave communication will become an integral part of mobile networks and WLAN
 - Single links more or less well understood
 - Managing large dynamic networks remains a challenge

THANK YOU!

