
© 2018 NETRONOME SYSTEMS, INC.

David Beckett
Jakub Kicinski

eBPF/XDP

SIGCOMM 2018

© 2018 NETRONOME SYSTEMS, INC. 2

Introduction

Jakub Kicinski
Lead Software Engineer

eBPF Kernel Development

David Beckett

Software Engineer

eBPF Application Development

© 2018 NETRONOME SYSTEMS, INC. 3

Overview

●  What is eBPF/XDP?
●  Demos
●  SmartNIC eBPF offload
●  Host dataplane Acceleration
●  SmartNIC offload Demos

© 2018 NETRONOME SYSTEMS, INC. 4

eBPF System

RX Port

TCP Stack

Netfilter

TC

XDP
eBPF Driver Space

Kernel Space

0

Key

...

Userspace

Maps

ABC

Value

...

© 2018 NETRONOME SYSTEMS, INC. 5

What is XDP?

XDP allows packets to be reflected, filtered or redirected
without traversing networking stack
▶  eBPF programs classify/modify traffic and return

XDP actions
Note: cls_bpf in TC works in same manner

▶  XDP Actions
•  XDP_PASS
•  XDP_DROP
•  XDP_TX
•  XDP_REDIRECT
•  XDP_ABORT - Something went wrong

▶  Currently hooks onto RX path only
•  Other hooks can also work on TX

RX port

TCP Stack

Netfilter (1 Mpps)

TC (5Mpps)

XDP (20Mpps)

eBPF

XDP
Actions

Redirect
socket

Intended
socket

Redirect
port

XDP_PASS

XDP_REDIRECT

XDP_DROP

XDP_TX Return
XDP

action

Driver Space

Kernel Space

© 2018 NETRONOME SYSTEMS, INC. 6

What is the eBPF Architecture?

A kernel-based virtual machine to enable low-level packet processing
▶  Think Java VMs in the kernel
•  Networking focused ISA/bytecode
•  10 64-bit registers

-  32-bit subregisters
•  Small stack (512 bytes)
•  Infinite-size key value stores (maps)

▶  Write programs in C, P4, Go or Rust
•  C is LLVM compiled to BPF bytecode
•  Verifier checked
•  JIT converts to assembly

▶  Hooks into the kernel in many places
•  Final packet handling dependent on hook

LLVM/Clang

Prog.c

Verifier

JIT
(architecture
dependent)

CPU (ARM64/
X86/

PowerPC)

Prog.o (unverified)

Prog.o (verified)

Prog.asm

© 2018 NETRONOME SYSTEMS, INC. 7

Maps

Maps are key-value stores used to store state
▶  Up to 128 maps per program
▶  Infinite size
▶  Multiple different types-Non XDP

-  BPF_MAP_TYPE_HASH
-  BPF_MAP_TYPE_ARRAY
-  BPF_MAP_TYPE_PROG_ARRAY
-  BPF_MAP_TYPE_PERF_EVENT_ARRAY
-  BPF_MAP_TYPE_PERCPU_HASH
-  BPF_MAP_TYPE_PERCPU_ARRAY
-  BPF_MAP_TYPE_STACK_TRACE
-  BPF_MAP_TYPE_CGROUP_ARRAY

▶  Accessed via map helpers

-  BPF_MAP_TYPE_LRU_HASH
-  BPF_MAP_TYPE_LRU_PERCPU_HASH
-  BPF_MAP_TYPE_LPM_TRIE
-  BPF_MAP_TYPE_ARRAY_OF_MAPS
-  BPF_MAP_TYPE_HASH_OF_MAPS
-  BPF_MAP_TYPE_DEVMAP
-  BPF_MAP_TYPE_SOCKMAP
-  BPF_MAP_TYPE_CPUMAP

0

Key

19

4121

91

12111
...

10.0.0.1

Value

10.0.0.6

121.0.0.1

10.0.1.1

5.0.2.12
...

© 2018 NETRONOME SYSTEMS, INC. 8

Helpers

Helpers are used to add functionality that would otherwise be difficult
▶  Key XDP Map helpers

-  bpf_map_lookup_elem
-  bpf_map_update_elem
-  bpf_map_delete_elem
-  bpf_redirect_map

▶  Head Extend
-  bpf_xdp_adjust_head
-  bpf_xdp_adjust_meta

▶  Others
-  bpf_ktime_get_ns
-  bpf_trace_printk
-  bpf_tail_call
-  Bpf_redirect

https://github.com/torvalds/linux/blob/master/include/uapi/linux/bpf.h

© 2018 NETRONOME SYSTEMS, INC. 9

BPF Bytecode

64-bit, 2 operand BPF bytecode instructions are split as follows

op:8

BPF_JNE | BPF_K | BPF_JMP

dst_reg:4
0x1 src_reg:4

0x0
off:16

0x001

imm:32
0x00000800

operation:4

BPF_JNE

source:1

BPF_K

insn_class:3

BPF_JMP

mode:8

BPF_H

size:2

BPF_ABS

insn_class:3

BPF_LD

ALU/JMP LD/STO

© 2018 NETRONOME SYSTEMS, INC. 10

XDP Actions

Register 0 denotes the return value

Value Action Description

0 XDP_ABORTED Error, Block the packet

1 XDP_DROP Block the packet

2 XDP_PASS Allow packet to continue up to the kernel

3 XDP_TX Bounce the packet

© 2018 NETRONOME SYSTEMS, INC. 11

Code Snippet - XDP/eBPF Example

#include	<linux/bpf.h>	
#include	"bpf_api.h"	
#include	"bpf_helpers.h"	
	
SEC(“xdp_prog1”)	
int	xdp_prog1(struct	xdp_md	*xdp)	
{	

	unsigned	char	*data;	
	

	data	=	(void	*)(unsigned	long)xdp->data;		
	if	(data	+	14	>	(void	*)(long)xdp->data_end)	
	 	return	XDP_ABORTED;	

	
	if	(data[12]	!=	0x22	||	data[13]	!=	0x22)	
	 	return	XDP_DROP;	

	
	return	XDP_PASS;	

}

xdp_prog1:	
							0: 	b7	00	00	00	00	00	00	00	 	r0	=	0	
							1: 	61	12	04	00	00	00	00	00	 	r2	=	*(u32	*)(r1	+	4)	
							2: 	61	11	00	00	00	00	00	00	 	r1	=	*(u32	*)(r1	+	0)	
							3: 	bf	13	00	00	00	00	00	00	 	r3	=	r1	
							4: 	07	03	00	00	0e	00	00	00	 	r3	+=	14	
							5: 	2d	23	07	00	00	00	00	00	 	if	r3	>	r2	goto	7	
							6: 	b7	00	00	00	01	00	00	00	 	r0	=	1	
							7: 	71	12	0c	00	00	00	00	00	 	r2	=	*(u8	*)(r1	+	12)	
							8: 	55	02	04	00	22	00	00	00	 	if	r2	!=	34	goto	4	
							9: 	71	11	0d	00	00	00	00	00	 	r1	=	*(u8	*)(r1	+	13)	
						10: 	b7	00	00	00	02	00	00	00	 	r0	=	2	
						11: 	15	01	01	00	22	00	00	00	 	if	r1	==	34	goto	1	
						12: 	b7	00	00	00	01	00	00	00	 	r0	=	1	
	
LBB0_4:	
						13: 	95	00	00	00	00	00	00	00	 	exit	

Drop	packets	not	EtherType	0x2222	

Clang	Compiler	

© 2018 NETRONOME SYSTEMS, INC. 12

Kernel Security and Stability

eBPF code injected into the kernel must be safe
▶  Potential risks
•  Infinite loops could crash the kernel
•  Buffer overflows
•  Uninitialized variables
•  Large programs may cause performance issues
•  Compiler errors

© 2018 NETRONOME SYSTEMS, INC. 13

eBPF Verifier

The verifier checks for the validity of programs
▶  Ensure that no back edges (loops) exist
•  Mitigated through the use #pragma unroll

▶  Ensure that the program has no more than 4,000 instructions
▶  There are also a number of other checks on the validity of register usage
•  These are done by traversing each path through the program

▶  If there are too many possible paths the program will also be rejected
•  1K branches
•  130K complexity of total instructions

© 2018 NETRONOME SYSTEMS, INC. 14

Verifier-Directed Acyclical Graph

The verifier checks for the DAG property
▶  Ensures that no back edges (loops) exist
▶  Backward jumps are allowed
•  Only if they do not cause loops

▶  Handled by check_cfg() in verifier.c

0

1

2

3

4

5

6

check_cfg()

Any program
with a loop is
rejected

© 2018 NETRONOME SYSTEMS, INC. 15

DAG Example

xdp_prog1:	
	 	r0	=	0	
	 	r2	=	*(u32	*)(r1	
+	4)	
	 	r1	=	*(u32	*)(r1	
+	0)	
	 	r3	=	r1	
	 	r3	+=	14	
	 	if	r3	>	r2	goto	7	
	 	r0	=	1	
	 	r2	=	*(u8	*)(r1	+	
12)	
	 	if	r2	!=	34	goto	
4	
	 	r1	=	*(u8	*)(r1	+	
13)	
	 	r0	=	2	
	 	if	r1	==	34	goto	
1	
	 	r0	=	1	

#include	<linux/bpf.h>	
#include	"bpf_api.h"	
#include	"bpf_helpers.h"	
	
SEC(“xdp_prog1”)	
int	xdp_prog1(struct	xdp_md	*xdp)	
{	

	unsigned	char	*data;	
	

	data	=	(void	*)(unsigned	long)xdp->data;		
	if	(data	+	14	>	(void	*)(long)xdp->data_end)	
	 	return	XDP_ABORTED;	

	
	if	(data[12]	!=	0x22	||	data[13]	!=	0x22)	
	 	return	XDP_DROP;	

	
	return	XDP_PASS;	

}

DAG	shown	with	bpftool	and	dot	graph	generator
		#	bpftool	prog	dump	xlated	id	13	visual	>	cfg.txt	
		#	dot	-Tps	cfg.txt	-o	cfg.ps	

© 2018 NETRONOME SYSTEMS, INC. 16

x86 JIT Code - XDP/eBPF Example

JITed	for	
x86	CPU	

			0: 	push			%rbp	
			1: 	mov				%rsp,%rbp	
			4: 	sub				$0x28,%rsp	
			b: 	sub				$0x28,%rbp	
			f: 	mov				%rbx,0x0(%rbp)	
		13: 	mov				%r13,0x8(%rbp)	
		17: 	mov				%r14,0x10(%rbp)	
		1b: 	mov				%r15,0x18(%rbp)	
		1f: 	xor				%eax,%eax	
		21: 	mov				%rax,0x20(%rbp)	
		25: 	xor				%eax,%eax	
		27: 	mov				0x8(%rdi),%rsi	
		2b: 	mov				0x0(%rdi),%rdi	
		2f: 	mov				%rdi,%rdx	
		32: 	add				$0xe,%rdx	
		36: 	cmp				%rsi,%rdx	
		39: 	ja					
0x0000000000000060	
		3b: 	mov				$0x1,%eax	
		40: 	movzbq	0xc(%rdi),%rsi	
		45: 	cmp				$0x22,%rsi	
		49: 	jne				
0x0000000000000060	
		4b: 	movzbq	0xd(%rdi),%rdi	
		50: 	mov				$0x2,%eax	
		55: 	cmp				$0x22,%rdi	
		59: 	je					
0x0000000000000060	
		5b: 	mov				$0x1,%eax	
		60: 	mov				0x0(%rbp),%rbx	
		64: 	mov				0x8(%rbp),%r13	
		68: 	mov				0x10(%rbp),%r14	
		6c: 	mov				0x18(%rbp),%r15	
		70: 	add				$0x28,%rbp	
		74: 	leaveq		
		75: 	retq				

Verifier	

xdp_prog1:	
	 	r0	=	0	
	 	r2	=	*(u32	*)(r1	
+	4)	
	 	r1	=	*(u32	*)(r1	
+	0)	
	 	r3	=	r1	
	 	r3	+=	14	
	 	if	r3	>	r2	goto	7	
	 	r0	=	1	
	 	r2	=	*(u8	*)(r1	+	
12)	
	 	if	r2	!=	34	goto	
4	
	 	r1	=	*(u8	*)(r1	+	
13)	
	 	r0	=	2	
	 	if	r1	==	34	goto	
1	
	 	r0	=	1	

© 2018 NETRONOME SYSTEMS, INC. 17

Open Source Tools

Bpftool
▶  Lists active bpf programs and maps
▶  Interactions with eBPF maps (lookups or updates)
▶  Dump assembly code (JIT and Pre-JIT)

Iproute2
▶  Can load and attach eBPF programs to TC, XDP or XDP offload (SmartNIC)

Libbpf
▶  BPF library allowing for user space program access to eBPF api

© 2018 NETRONOME SYSTEMS, INC. 18

Public XDP Use Cases

Current use cases focus on load balancers, DDoS mitigation and simple monitoring
▶  Load balancer
•  Used by FB Katran to replace IPVS - 2X performance per core

▶  DDoS mitigation
•  Cloudflare starting the transition to eBPF

▶  Distributed Firewall
•  Flexible, high-performance blacklisting

FB Load Balancer throughput: XDP vs IPVS

© 2018 NETRONOME SYSTEMS, INC. 19

Use Cases

Suricata Intrusion Detection System (IDS)
▶  Whitelist large flows (e.g. Netflix stream)

“Suricata Performance with a S like Security” É. Leblond

WAN LAN

IDS

© 2018 NETRONOME SYSTEMS, INC. 20

Summary: Driver XDP

Advantages
▶  Increased performance - 4X
▶  Reuses kernel infrastructure
▶  Upstream-boot Linux and you are good to go
▶  Allows updates of low-level functionality without kernel reboot
•  This should not be underestimated
•  A particular DC provider spent 3 months rebooting servers when a bug was found

Disadvantages
▶  CPU still limits the use-cases at high data rates

© 2018 NETRONOME SYSTEMS, INC. 21

Demo 1 - XDP Actions and Packet Modification

xdp_drop

#include	<linux/bpf.h>	
	
int	main()	
{	
				return	XDP_DROP;	
}

RX Port

TCP Stack

Netfilter

TC

XDP
eBPF

Userspace C Program

BPF Program

clang

iproute

Program Loaded

© 2018 NETRONOME SYSTEMS, INC. 22

Demo 2 - Maps

xdp_actions based on eBPF map

RX Port

TCP Stack

Netfilter

TC

XDP
eBPF Driver Space

Kernel Space

Userspace

Map

0

Key

XDP_TX

Value

Value Action

0 XDP_ABORTED

1 XDP_DROP

2 XDP_PASS

3 XDP_TX

© 2018 NETRONOME SYSTEMS, INC. 23

Demo 3 - Load Balancer

Demo Source: https://github.com/Netronome/bpf-samples/tree/master/l4lb

1.1.1.1 2.2.2.2

TCP

1292 80

4 Tuple Hash
0

Hash Key

1

2

10.0.0.1

Server

10.0.0.6

10.0.0.9

2.2.2.2 10.0.0.9

1.1.1.1 2.2.2.2

TCP

1292 80

© 2018 NETRONOME SYSTEMS, INC. 24

DAG Example - Load Balancer Demo

https://github.com/Netronome/bpf-samples/tree/master/l4lb

© 2018 NETRONOME SYSTEMS, INC. 25

XDP Offload

Core 1 Core 2

Core 3 Core 4

Network packets

eBPF running
on Driver (XDP)

Linux Kernel

User Space

© 2018 NETRONOME SYSTEMS, INC. 26

BPF for Host Datapath Acceleration

▶  BPF VM provides a simple and well understood execution environment
▶  Most RISC cores should be able to execute JITed BPF code
▶  Kernel infrastructure improves, including verifier/analyzer, JIT compilers for all common host

architectures and some common embedded architectures like ARM
or x86

▶  Unlike higher level languages BPF is a intermediate representation (IR) which provides binary
compatibility

▶  Advanced networking devices are capable of creating appropriate sandboxes
▶  Android APF targets smaller processors in mobile handsets for filtering wake ups from remote

processors (most likely network interfaces) to improve battery life
▶  Linux kernel community is very active in extending performance and improving BPF feature set,

with AF_XDP being a most recent example
▶  BPF is extensible through helpers and maps allowing us to make use of special HW features

(when gain justifies the effort)

© 2018 NETRONOME SYSTEMS, INC. 27

Kernel Offload - BPF Offload Memory Mapping

NIC

 Chip

Island (x6 per Chip)

CTM (256 KB)

IMEM(4 MB)

DRAM
(2+GB)

CLS
(64 KB)

Thread (x4 per Core)
800Mhz Core

LMEM
(1 KB)

GPRs

10 Registers
(64-bit, 32-bit
subregisters)

512 byte
stack

Maps, varying
sizes

Driver

x50 BPF
workers

© 2018 NETRONOME SYSTEMS, INC. 28

Kernel Offload - Programming Model

▶  LLVM compilation as normal
▶  iproute/tc/libbpf loads the program as

normal but specifying “offload enable” flag
▶  maps are created on the device
▶  kernel directs the eBPF program to nfp/src/

bpf/jit.c to converts to NFP machine code
▶  translation reuses the kernel verifier

infrastructure for analysis
▶  full ABI compatibility with the in-kernel

BPF

© 2018 NETRONOME SYSTEMS, INC. 29

NFP JIT

▶  LLVM optimizations can tune the code for
BPF or even NFP BPF

▶  JIT steps:
•  preparation - build data structures
•  analysis - uses kernel verifier infrastructure
•  code generation
•  loading/relocation

▶  two pass translator:
•  convert memory accesses
•  inline helpers

Linux kernel: driver/net/ethernet/netronome/nfp/
bpf/jit.c

GitHub:
Netronome/nfp-drv-kmods/blob/master/src/bpf/jit.c

© 2018 NETRONOME SYSTEMS, INC. 30

NFP JIT Example
Bpftool	prog	dump	jited	id	1	
			0: 		.0		immed[gprB_6,	0x3fff]	
			8: 		.1		alu[gprB_6,	gprB_6,	AND,	*l$index1]	
		10: 		.2		immed[gprA_0,	0x0],	gpr_wrboth	
		18: 		.3		immed[gprA_1,	0x0],	gpr_wrboth	
		20: 		.4		alu[gprA_4,	gprB_6,	+,	*l$index1[2]],	gpr_wrboth	
		28: 		.5		immed[gprA_5,	0x0],	gpr_wrboth	
		30: 		.6		alu[gprA_2,	--,	B,	*l$index1[2]],	gpr_wrboth	
		38: 		.7		immed[gprA_3,	0x0],	gpr_wrboth	
		40: 		.8		alu[gprA_6,	--,	B,	gprB_2],	gpr_wrboth	
		48: 		.9		alu[gprA_7,	--,	B,	gprB_3],	gpr_wrboth	
		50: 	.10		alu[gprA_6,	gprA_6,	+,	0xe],	gpr_wrboth	
		58: 	.11		alu[gprA_7,	gprA_7,	+carry,	0x0],	gpr_wrboth	
		60: 	.12		alu[--,	gprA_4,	-,	gprB_6]	
		68: 	.13		alu[--,	gprA_5,	-carry,	gprB_7]	
		70: 	.14		bcc[.33]	
		78: 	.15		immed[gprA_0,	0x1],	gpr_wrboth	
		80: 	.16		immed[gprA_1,	0x0],	gpr_wrboth	
		88: 	.17		mem[read32_swap,	$xfer_0,	gprA_2,	0xc,	1],	
ctx_swap[sig1]	
		90: 	.18		ld_field_w_clr[gprA_4,	0001,	$xfer_0],	gpr_wrboth	
		98: 	.19		immed[gprA_5,	0x0],	gpr_wrboth	
		a0: 	.20		alu[--,	gprA_4,	XOR,	0x22]	
		a8: 	.21		bne[.33]	
		b0: 	.22		alu[--,	gprA_5,	XOR,	0x0]	
		b8: 	.23		bne[.33]	
		c0: 	.24		ld_field_w_clr[gprA_2,	0001,	$xfer_0,	>>8],	
gpr_wrboth	
		c8: 	.25		immed[gprA_3,	0x0],	gpr_wrboth	
		d0: 	.26		immed[gprA_0,	0x2],	gpr_wrboth	
		d8: 	.27		immed[gprA_1,	0x0],	gpr_wrboth	
																					…	

JITed	into	
NFP	Microcode	

All upstream bpftool with libbfd support;
no vendor tools needed

xdp_prog1:	
	 	r0	=	0	
	 	r2	=	*(u32	*)(r1	
+	4)	
	 	r1	=	*(u32	*)(r1	
+	0)	
	 	r3	=	r1	
	 	r3	+=	14	
	 	if	r3	>	r2	goto	7	
	 	r0	=	1	
	 	r2	=	*(u8	*)(r1	+	
12)	
	 	if	r2	!=	34	goto	
4	
	 	r1	=	*(u8	*)(r1	+	
13)	
	 	r0	=	2	
	 	if	r1	==	34	goto	
1	
	 	r0	=	1	

© 2018 NETRONOME SYSTEMS, INC. 31

JIT Optimizations

We can identify from assembly code certain sequences that can be replaced with
fewer/faster NFP instructions, e.g.:
▶  memcpy(new_eth, old_eth, sizeof(*old_eth))
▶  Rotation
▶  ALU operation + register move
▶  bit operations
▶  compare and jump

32-bit subregister use; batching atomic
operations; optimizing out helpers, e.g.:
▶  packet extend
▶  memory lookups

Creating read-only maps on the device

© 2018 NETRONOME SYSTEMS, INC. 32

Demo 4 - Load Balancer on Offload

Demo Source: https://github.com/Netronome/bpf-samples/tree/master/l4lb

© 2018 NETRONOME SYSTEMS, INC. 33

Kernel Offload - Multi-Stage Processing

▶  Use of offloads does not preclude standard in-driver XDP use
▶  Offload some programs, leave some running on the host
▶  Maximize efficiency by playing to NFPs and host’s strengths
▶  Communication between programs via XDP/SKB metadata

© 2018 NETRONOME SYSTEMS, INC. 34

Redefining NIC Behavior

BPF offload allows users to change standard NIC features, e.g.:
▶  RSS
•  Users can create their own RSS schemes and parse arbitrary protocols
•  On standard NIC all packets go to queue 0 if protocols can’t be parsed
•  More examples schemes in presentation about demos

▶  Flow affinity - similarly to RSS any flow affinity to RX queues can be defined
▶  SR-IOV forwarding (future)
•  With upcoming kernel extensions users will be able to define SR-IOV datapath in BPF
•  BPF-defined filtering and forwarding in HW
•  Any custom encapsulation/overlay supported

© 2018 NETRONOME SYSTEMS, INC. 35 CONFIDENTIAL

Switching with eBPF (incl. SR-IOV)

●  full switchdev mode
○  Linux term for representing all ports as interfaces

●  XDP ingress on all reprs (just link TC forwarding)
●  XDP_REDIRECT support for forwarding decisions
●  fallback path driver XDP? AF_XDP? up to users
●  per-ASIC program and map sharing
●  ingress device from xdp_rxq_info
●  dealing with mcast/bcast requires a new BPF helper

Port1 Port0

PF VFs

BPF

© 2018 NETRONOME SYSTEMS, INC. 36

PCIe Rings

The queue is chosen using a hash on
the header values, such as:
▶  IP Addresses
▶  UDP/TCP port numbers

Core 1 Core 2

Core 3 Core 4

© 2018 NETRONOME SYSTEMS, INC. 37

Programmable RSS

User programmable RSS
▶  Hash on payload headers
▶  Hash on inner IP headers

Core 1 Core 2

Core 3 Core 4

© 2018 NETRONOME SYSTEMS, INC. 38

Demo 5 - Programmable RSS

https://github.com/Netronome/bpf-samples/tree/master/programmable_rss

© 2018 NETRONOME SYSTEMS, INC. 39

Offload Support
Category Functionality Kernel

4.16
Kernel
4.17

Kernel
4.18

Near
Future

eBPF offload
program features

XDP_DROP

XDP_PASS

XDP_TX

XDP_ABORTED

Packet read access

Conditional statements

xdp_adjust_head()

bpf_get_prandom_u32()

perf_event_output()

RSS rx_queue_index selection

bpf_tail_call()

bpf_adjust_tail()

eBPF offload
 map features

Hash maps

Array maps

bpf_map_lookup_elem()

bpf_map_delete_elem()

Atomic write (sync_fetch_and_add)

eBPF offload
performance
optimizations

Localized packet cache

32-bit BPF support

© 2018 NETRONOME SYSTEMS, INC. 40

How to Participate with eBPF?

Netronome Guides and Firmware
▶  https://help.netronome.com/support/solutions/folders/36000172266

Demo Applications
▶  https://github.com/Netronome/bpf-samples

© 2018 NETRONOME SYSTEMS, INC.

Thank You

