
1

Web-based Attacks on
Local IoT Devices

Gunes Acar Danny Huang Frank Li
Arvind Narayanan Nick Feamster

2

3

4

How to reach local IoT devices?

Public devices (e.g., port forwarding)

Local malware

Web attacks (this paper)

5

How to reach local IoT devices?

Public devices (e.g., port forwarding)

Local malware

Web attacks (this paper)

Local Network

6

How to reach local IoT devices?

Public devices (e.g., port forwarding)

Local malware

Web attacks (this paper)
1. Discover certain IoT devices

2. Access & control IoT devices

Local Network

Preparing the Attacks

7

8

Targeting HTTP Servers

1. Set up a Raspberry Pi as a WiFi AP,
connecting 15 IoT devices and an
Android phone.

9

Targeting HTTP Servers

1. Set up a Raspberry Pi as a WiFi AP,
connecting 15 IoT devices and an
Android phone.

2. Interact with devices, taking pcaps at
the RPi. Observed HTTP endpoints
on 7 devices.

IoT Devices

Amcrest IP Camera

D-Link WiFi Camera

Google Home

Google Chromecast

Samsung SmartCam

Samsung Smart TV

Belkin Wemo Switch

10

Targeting HTTP Servers

1. Set up a Raspberry Pi as a WiFi AP,
connecting 15 IoT devices and an
Android phone.

2. Interact with devices, taking pcaps at
the RPi. Observed HTTP endpoints
on 7 devices.

3. Searched for further documentation
on HTTP APIs
a. Total: 35 GET, 8 POST

IoT Devices

Amcrest IP Camera

D-Link WiFi Camera

Google Home

Google Chromecast

Samsung SmartCam

Samsung Smart TV

Belkin Wemo Switch

Attack 1:

Identify Local IoT Devices

11

12

Attack Steps

13

Attack Steps

1. Get local IP (via WebRTC SDP)

192.168.6.6

14

Attack Steps

192.168.6.6

2. Find active local devices.
a. Scan local subnet on port 81, sending GET request (via

Fetch API)
b. Measure response times (TCP RST vs TCP timeout)

192.168.6.88

15

Attack Steps

2. Find active local devices.
a. Scan local subnet on port 81, sending GET request (via

Fetch API)
b. Measure response times (TCP RST vs TCP timeout)

192.168.6.6

192.168.6.88

TCP RST

TCP SYN to port 81

16

Attack Steps

2. Find active local devices.
a. Scan local subnet on port 81, sending GET request (via

Fetch API)
b. Measure response times (TCP RST vs TCP timeout)

192.168.6.6

192.168.6.88

192.168.6.89

TCP SYN to port 81

?

17

Attack Steps

3. Identify IoT devices.
a. Send request for our GET endpoints to active IP

addresses, using HTML5 <audio> element.
b. Use resulting MediaError message to infer resource

availability (new side channel).

192.168.6.6

192.168.6.88

18

Attack Steps

3. Identify IoT devices.
a. Send request for our GET endpoints to active IP

addresses, using HTML5 <audio> element.
b. Use resulting MediaError message to infer resource

availability (new side channel).

192.168.6.6

192.168.6.88

GET /setup.xml

19

Attack Steps

3. Identify IoT devices.
a. Send request for our GET endpoints to active IP

addresses, using HTML5 <audio> element.
b. Use resulting MediaError message to infer resource

availability (new side channel).

If Exists: MEDIA_ERR_SRC_NOT_SUPPORTED “DEMUXER_ERROR_COULD_NOT_OPEN:
FFmpegDemuxer: open context failed”

Else: MEDIA_ELEMENT_ERROR “Format error”

20

Attack Steps

3. Identify IoT devices.
a. Send request for our GET endpoints to active IP

addresses, using HTML5 <audio> element.
b. Use resulting MediaError message to infer resource

availability (new side channel).

If Exists: MEDIA_ERR_SRC_NOT_SUPPORTED “Failed to init decoder”
Else: MEDIA_ELEMENT_ERROR “Message 404: Not Found”

21

Attack Steps

3. Identify IoT devices.
a. Send request for our GET endpoints to active IP

addresses, using HTML5 <audio> element.
b. Use resulting MediaError message to infer resource

availability (new side channel).

Safari: Fetches timed out
Edge: No MediaError error messages
(Attack 1 does not work)

22

Implications

Side-channel sidestepping SOP (Chrome bug bounty)

Attack stepping stone

Privacy leaks (e.g., network fingerprinting)

Attack 2:

Access & Control Local Devices

23

24

DNS Rebinding

Attack fully bypassing SOP
(D. Dean, E. Felten, and D. Wallach, IEEE S&P 1996)

Requires a web attacker (controls malicious
domain + webserver) also controlling domain’s
authoritative DNS nameserver

25

Attack Steps

26

Attack Steps

192.168.6.88

27

Attack Steps

1. Victim visits attacker.com, queries malicious nameserver
for attacker.com. Return web server IP w/ short TTL.

192.168.6.88

Authoritative
DNS Server

Attacker.com
Web Server
6.6.6.6

ANSWER SECTION:
Attacker.com 1 IN A 6.6.6.6

GET / HTTP/1.1

HTTP 200

28

Attack Steps

2. Attacker website loads another resource test.

192.168.6.88

Authoritative
DNS Server

Attacker.com
Web Server
6.6.6.6

29

Attack Steps

3. If attacker.com’s DNS record is cached, test is directly
retrieved. If so, wait and retry...

192.168.6.88

Authoritative
DNS Server

Attacker.com
Web Server
6.6.6.6GET /test HTTP/1.1

HTTP 200

30

Attack Steps

4. If attacker.com’s DNS record is not cached, browser queries
malicious nameserver again. Now return target IP w/ large TTL.

192.168.6.88

Authoritative
DNS Server

Attacker.com
Web Server
6.6.6.6

ANSWER SECTION:
Attacker.com 300 IN A 192.168.6.88

31

Attack Steps

5. This time, retrieving test fails. But attacker.com is now
rebound to the target IP, and can make direct requests.

192.168.6.88

Authoritative
DNS Server

Attacker.com
Web Server
6.6.6.6

GET /test HTTP/1.1

HTTP 404

32

Attack Steps

5. This time, retrieving test fails. But attacker.com is now
rebound to the target IP, and can make direct requests.

192.168.6.88

Authoritative
DNS Server

Attacker.com
Web Server
6.6.6.6

GET /setup.xml HTTP/1.1

HTTP 200

33

Attack on Devices

34

Attack on Devices

Google Home/Chromecast

Potential attacks:
● Play arbitrary Youtube videos on Chromecast
● Reboot Chromecast/Home
● Scan for WiFi networks and return information

35

Attack Demo

http://www.youtube.com/watch?v=KsleJIj4XB8

36

Implications

Attacker control of IoT device actions

Exploiting IoT device vulnerabilities for full
compromise

Privacy leaks (e.g., extensive device fingerprinting
or user profiling)

Moving
Forward...

● Low barrier to attacks on
local IoT devices via
malicious websites.

● Need defenses that protect
against lateral attacks.

37

Thank you

https://iot-inspector.princeton.edu/

frankli@cs.berkeley.edu
@frankli714

38

39

Attack 1 Countermeasures

Home Users:
- Disable getting local IP via WebRTC SDP
- Configure DHCP to allocate for a larger subnet (e.g., /16)

Browsers:
- Limit private IP access for web pages with public domains

IoT Vendors:
- Respond to all GET request with 200 OK code

40

Attack on Devices

41

Attack on Devices

Google Home/Chromecast

42

Attack on Devices

Google Home/Chromecast

Access:
● Unique device ID
● Build/firmware version
● SSID of connected WiFi network
● Device schedules/alarms (Home)

43

Attack on Devices

Google Home/Chromecast

Control:
● Reboot device
● Play any video (Chromecast)
● Scan for WiFi networks and return SSIDs detected

44

Attack 2 Countermeasures

Home Users:
- Enable DNS forwarding with rebind protection

Browsers:
- Unclear?

IoT Vendors:
- Filter/validate based on HTTP headers

DNS providers:
- Filter private IPs from DNS responses

HTTP endpoints - examples
- DlinkCamera - GET http://IP-ADDRESS:80/common/info.cgi
- Response:

model=DCS-5020L

brand=D-Link

version=1.14

build=9

hw_version=A

name=DCS-5020L

location=

macaddr=B0:C5:54:0C:D2:74

ipaddr=172.24.1.99

netmask=255.255.255.0

gateway=172.24.1.1

wireless=yes

ptz=P,T

inputs=0

outputs=0

speaker=no

videoout=no

HTTP endpoints - examples
Get all WiFi networks on WeMo switch:
http://IP-ADDRESS:49154/upnp/control/WiFiSetup1 {"method": "POST", "body": "<?xml

version='1.0'?><SOAP-ENV:Envelope

xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'

SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'><SOAP-ENV:Body>

<m:GetNetworkList xmlns:m='urn:Belkin:service:WiFiSetup:1'>

</m:GetNetworkList></SOAP-ENV:Body></SOAP-ENV:Envelope>", "headers": {"Content-Type":

"text/xml", "SOAPAction": "\"urn:Belkin:service:WiFiSetup:1#GetNetworkList\""}}

Returns all nearby Wifi networks

HTTP endpoints - examples

- Play arbitrary videos on Google Chromecast - POST
http://IP-ADDRESS:8008/apps/YouTube {"method": "POST", "body":

"v=oHg5SJYRHA0", "headers": {"User-Agent": "blah"}}

- Reboot Google Home and Chromecast -
http://172.24.1.51:8008/setup/reboot {"method": "POST",

"body": "{\"params\": \"now\"}", "headers": {"User-Agent":

"blah", "Content-Type": "application/json"}}

Results

Attack 2

Attack 2: Which OSes and browsers are vulnerable

Responsible Disclosure
● We reported the vulnerabilities to...

○ Browser vendors: Chromium (Google), Mozilla
○ IoT vendors: Google, Samsung, D-Link, Belkin

● Chromium offered bug bounty of $500
○ Fixed, will be released in v68

● Mozilla bug is still “Unassigned”
● Google Home: known issue
● Belkin promised to release a patch in August
● Ack from Samsung
● No response from D-Link

