Web-based Attacks on
Local loT Devices

Gunes Acar Danny Huang Frank Li
Arvind Narayanan Nick Feamster

FORTUNE
Samsung and Roku Smart TVs Vulnerable to

TEGH « SAMSUNG Hacking, Consumer Reports Finds

Samsung's smart fridge could be used to steal your Gmail login . . _
Security and privacy testing of several brands also reveals

° o @ @ broad-based data collection. How to limit your exposure.

By Consumer Reports
February 07, 2018

[* ——=
s o o B fvpmB

Forbes Billionaires Innovation Leadership Money Consumer Industry

Consumer Reports has found that millions of smart TVs can be controlled by
hackers exploiting easy-to-find security flaws.

A Massive Number Of IoT Cameras

The problems affect Samsung televisions, along with models made by TCL

Are HaCkable == And NOW The NeXt and other brands that use the Roku TV smart-TV platform, as well as
. e streaming devices such as the Roku Ultra.
Web Crisis Looms =

Thomas Fox-Brewster Forbes Staff
Security
.

Call to ban sale of loT toys with
proven security flaws

Natasha Lomas @riptari / Nov 15,2017 C] comment

How to reach local IoT devices?

Public devices (e.g., port forwarding)
Local malware

Web attacks (this paper)

How to reach local IoT devices?

Public devices (e.g., port forwarding)

Local Network
L ocal malware

Web attacks (this paper)

How to reach local IoT devices?

Public devices (e.g., port forwarding)

Local Network
L ocal malware

Web attacks (this paper)

1. Discover certain loT devices

2. Access & control 10T devices

Preparing the Attacks

Targeting HTTP Servers

1. Set up a Raspberry Pi as a WiFi AP,
connecting 15 loT devices and an
Android phone.

Targeting HTTP Servers

1.

2.

Set up a Raspberry Pi as a WiFi AP,
connecting 15 loT devices and an
Android phone.

Interact with devices, taking pcaps at
the RPi. Observed HTTP endpoints
on 7 devices.

loT Devices

Amcrest IP Camera

D-Link WiFi Camera

Google Home

Google Chromecast

Samsung SmartCam

Samsung Smart TV

Belkin Wemo Switch

Targeting HTTP Servers

1.

Set up a Raspberry Pi as a WiFi AP,
connecting 15 loT devices and an
Android phone.

Interact with devices, taking pcaps at
the RPi. Observed HTTP endpoints
on 7 devices.

Searched for further documentation
on HTTP APIs
a. Total: 35 GET, 8 POST

loT Devices

Amcrest IP Camera

D-Link WiFi Camera

Google Home

Google Chromecast

Samsung SmartCam

Samsung Smart TV

Belkin Wemo Switch

10

Attack 1:

ldentify Local loT Devices

Attack Steps

Attack Steps

1. Getlocal IP (via WebRTC SDP)

192.168.6.6

=1

r

13

Attack Steps

2. Find active local devices.
a. Scan local subnet on port 81, sending GET request (via

Fetch API)
b. Measure response times (TCP RST vs TCP timeout)
192.168.6.88
192.168.6.6
o1)

r

14

Attack Steps

2. Find active local devices.
a. Scan local subnet on port 81, sending GET request (via

Fetch API)
b. Measure response times (TCP RST vs TCP timeout)
192.168.6.88
192.168.6.6 TCP SYN to port 81

N

=1

r

TCP RST

Attack Steps

2. Find active local devices.
a. Scan local subnet on port 81, sending GET request (via

Fetch API)
b. Measure response times (TCP RST vs TCP timeout)
192.168.6.88
192.168.6.6
=1 o

r TCP SYN to port 81 —

Lt 192.168.6.89

? 4 16

Attack Steps

3. Identify loT devices.

a. Send request for our GET endpoints to active IP
addresses, using HTMLS <audio> element.

b. Use resulting MediaError message to infer resource
avallablllty (neW side Channel). 192.168.6.88

192.168.6.6

=1 m

@ -

17

Attack Steps

3. Identify loT devices.

a. Send request for our GET endpoints to active IP
addresses, using HTMLS <audio> element.

b. Use resulting MediaError message to infer resource
avallablllty (neW side Channel). 192.168.6.88

192.168.6.6 GET /setup.xml

i-?_ ——— &

18

Attack Steps

3. Identify loT devices.
a. Send request for our GET endpoints to active IP
addresses, using HTMLS <audio> element.
b. Use resulting MediaError message to infer resource
availability (new side channel).

If EXists: MEDIA ERR _SRC_NOT_SUPPORTED “DEMUXER_ERROR_COULD NOT_OPEN:
FFmpegDemuxer: open context failed”

Else: MEDIA_ELEMENT_ERROR “Format error” 19

Attack Steps

3. Identify loT devices.
a. Send request for our GET endpoints to active IP
addresses, using HTMLS <audio> element.
b. Use resulting MediaError message to infer resource
availability (new side channel).

If EXists: MEDIA ERR SRC_NOT_SUPPORTED “Failed to init decoder”
Else: MEDIA ELEMENT_ERROR “Message 404: Not Found”

20

Attack Steps

3. Identify loT devices.
a. Send request for our GET endpoints to active IP
addresses, using HTMLS <audio> element.

b. Use resulting MediaError message to infer resource
availability (new side channel).

Saféri: Fetches timed out
Edge: No MediaError error messages
(Attack 1 does not work)

21

Implications

Side-channel sidestepping SOP (Chrome bug bounty)

Attack stepping stone

Privacy leaks (e.g., network fingerprinting)

22

Attack 2:

Access & Control Local Devices

DNS Rebinding

Attack fully bypassing SOP
(D. Dean, E. Felten, and D. Wallach, IEEE S&P 1996)

Requires a web attacker (controls malicious
domain + webserver) also controlling domain’s
authoritative DNS nameserver

24

Attack Steps

Attack Steps

192.168.6.88

Attack Steps

1. Victim visits attacker.com, queries malicious nameserver
for attacker.com. Return web server IP w/ short TTL.

Authoritative
DNS Server

Web Server
GET / HTTP/1.1 6.6.6.6
ANSWER SECTION: T 192.168.6.88

Attacker.com 1

QX—1

Attacker.com

©

0

HTTP 200

Attack Steps

2. Attacker website loads another resource test.

Authoritative Attacker.com
DNS Server Web Server

6.6.6.6

192.168.6.88

©

QX—1

Attack Steps

3. If attacker.com’s DNS record is cached, test is directly

retrieved. If so, wait and retry...
Attacker.com

Authoritative
DNS Server Web Server
6.6.6.6

GET /test HTTP/1.1

192.168.6.88

©

B

Attack Steps

4. If attacker.com’s DNS record is not cached, browser queries
malicious nameserver again. Now return target IP w/ large TTL.

Authoritative Attacker.com
DNS Server Web Server
//\\\ 6.6.6.6
ANSWER SECTION: 192.168.6.88
Attacker.com 300 IN A 192.168.6.88

©

0

QX—1

Attack Steps

5. This time, retrieving test fails. But attacker.com is now
rebound to the target IP, and can make direct requests.

Authoritative
DNS Server

Attacker.com
Web Server

6.6.6.6
192.168.6.88

GET /test HTTP/1.1

HTTP 404

31

Attack Steps

5. This time, retrieving test fails. But attacker.com is now
rebound to the target IP, and can make direct requests.

Authoritative
DNS Server

Attacker.com
Web Server

6.6.6.6
192.168.6.88

GET /setup.xml HTTP/1.1

HTTP 200

32

Attack on Devices

33

Attack on Devices

Google Home/Chromecast

Potential attacks:

e Play arbitrary Youtube videos on Chromecast
e Reboot Chromecast/Home

e Scan for WiFi networks and return information

34

Attack Demo

http://www.youtube.com/watch?v=KsleJIj4XB8

Implications

Attacker control of loT device actions

Exploiting loT device vulnerabilities for full
compromise

Privacy leaks (e.g., extensive device fingerprinting
or user profiling)

36

Moving
Forward...

e | ow barrier to attacks on
local loT devices via
malicious websites.

e Need defenses that protect
against lateral attacks.

37

«©p
Thank you

https://iot-inspector.princeton.edu/

frankli@cs.berkeley.edu
@frankli714

38

Attack 1 Countermeasures

Home Users:
- Disable getting local IP via WebRTC SDP
- Configure DHCP to allocate for a larger subnet (e.g., /16)

Browsers:
- Limit private IP access for web pages with public domains

loT Vendors:
- Respond to all GET request with 200 OK code

39

Attack on Devices

40

Attack on Devices

Google Home/Chromecast

41

Attack on Devices

Google Home/Chromecast

Access:

e Unique device ID

e Build/firmware version
e SSID of connected WiFi network
e Device schedules/alarms (Home)

42

Attack on Devices

Google Home/Chromecast

Control:

e Reboot device

e Play any video (Chromecast)
e Scan for WiFi networks and return SSIDs detected

43

Attack 2 Countermeasures

Home Users:
- Enable DNS forwarding with rebind protection

Browsers:
- Unclear?

loT Vendors:
- Filter/validate based on HTTP headers

DNS providers:
- Filter private IPs from DNS responses "

HTTP endpoints - examples

- DlinkCamera - GET http://IP-ADDRESS:80/common/info.cgi

- Response:
model=DCS-5020L netmask=255.255.255.0
brand=D-Link gateway=172.24.1.1
version=1.14 wireless=yes
build=9 ptz=P,T
hw_version=A inputs=0
name=DCS-5020L outputs=0
location= speaker=no
macaddr=B0:C5:54:0C:D2:74 videoout=no

ipaddr=172.24.1.99

HTTP endpoints - examples

Get all WiFi networks on WeMo switch:
http://IP-ADDRESS:49154/upnp/control/WiFiSetupl {"method": "POST", "body": "<?xml
version="'1.0"'?><SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/’
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"' ><SOAP-ENV:Body>
<m:GetNetworkList xmlns:m='urn:Belkin:service:WiFiSetup:1'>
</m:GetNetworkList></SOAP-ENV:Body></SOAP-ENV:Envelope>", "headers": {"Content-Type":
"text/xml", "SOAPAction": "\"urn:Belkin:service:WiFiSetup:1#GetNetworkList\""}}

Returns all nearby Wifi networks

HTTP endpoints - examples

- Play arbitrary videos on Google Chromecast - POST
http://IP-ADDRESS:8008/apps/YouTube {"method": "POST", "body":
"v=0Hg5SJYRHAQ", "headers": {"User-Agent": "blah"}}

- Reboot Google Home and Chromecast -
http://172.24.1.51:8008/setup/reboot {"method": "POST",
"body": "{\"params\": \"now\"}", "headers": {"User-Agent":
"blah", "Content-Type": "application/json"}}

Results

IoT Device Attack

®

Amcrest HD Series IP Security Camera
D-Link Wifi Camera D @
Google Home

Google Chromecast
Samsung SmartCam HD Pro
Samsung UHD Smart TV
Belkin Wemo Smart Switch

Table 1: IoT devices with open HTTP servers, and to which
attacks ((1) and/or (2)) they are vulnerable.

CICICICIC,
SICICICIS,

Attack 2

Capabilities C D H S T W
Get Software Version or Model v v v v v/
Get Current SSID v v v v/
Get Nearby SSIDs v / v
Get Device Unique Identifier v v v v v/
Get Owner’s Username v

Change State v v v /

Table 3: What Attack (2) could do to IoT devices: Google
[C]hromecast, [D]-Link Camera, Google [H]ome, Samsung
[S]martCam, Samsung [T]V, and [W]emo Switch.

Attack 2: Which OSes and browsers are vulnerable

OS Request | Chrome Firefox Safari
Ubuntu GET | CDHSTW CDHSTW N/A
POST | CHTW CHTW N/A
macOS GET | CDHSTW CDHSTW CDHSTW
POST | CHTW CHTW CHTW
Windows GET | CDHSTW CDHSTW N/A
POST | CHTW CHTW N/A

Table 4: Which operating systems and browsers were vul-
nerable to Attack (2) against the following devices: Google
[C]hromecast, [D]-Link Camera, Google [H]ome, Samsung
[S]martCam, Samsung [T]V, and [W]emo Switch. An unfor-
matted letter indicates that the attack was successful on all
known HTTP endpoints on a given device; an underline in-
dicates unsuccessful attacks on all of the HTTP endpoints;
and italics indicates that some of the endpoints were vulner-
able to our attack. We omit listing Microsoft Edge as all at-
tacks failed on it.

Responsible Disclosure

We reported the vulnerabilities to...
o Browser vendors: Chromium (Google), Mozilla
o loT vendors: Google, Samsung, D-Link, Belkin
Chromium offered bug bounty of $500

o Fixed, will be released in v68
Mozilla bug is still “Unassigned”
Google Home: known issue
Belkin promised to release a patch in August
Ack from Samsung
No response from D-Link

