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PRESENTATION OUTLINE

• Problem formulation and specifics

• Distributional attributes

• The KSD approach for discretization

• Synthetic dataset evaluation

• Empirical dataset evaluation

• Conclusions and observations
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PROBLEM FORMULATION

• Flow classification is useful to ensure efficient network resource 

usage and support QoE

• Traffic is increasingly becoming encrypted by default

• Flow classification based on traditional Deep packet inspection (DPI) 

becomes unfeasible with encrypted flows

• Machine Learning on content-independent traffic characteristics can 

be used for classification of encrypted flows

• A subset of features used for classification are distribution-derived 

• Q: How can we best describe distribution-derived features? 
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PROBLEM SPECIFICS

Target use case

• Flow level (i.e. 5-tuple) characterization, not session level

• Focus on early flow classification: <=50 packets

• High speed: Up to 1 million flows per second in one box

J Garcia, T Korhonen, R Andersson, F Västlund. Towards Video Flow Classification at One Million Encrypted Flows per Second. IEEE AINA 2018
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Distributional attributes
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DISTRIBUTIONAL ATTRIBUTES OF FLOWS 

• Distributional attributes of N first packets of a flow:

• Packet sizes

• Interarrival times

• Burst-lengths (in seconds and/or bytes)

• Inter-burst lengths (in seconds)

• Distributional feature descriptors:

• Basic: Min/mean/max

• Moments-based: Standard deviation, variance, skew, kurtosis 

• Histogram based: Linear, Probabilistic, MDLP, or KSD discretization

• Bin-boundary placement, i.e. discretization, quantization, multi-splitting, … 

• Different discretization goals: 

• Encoding a scalar value 

• Describing a distribution 

• Maximizing the discriminative power between two distributions
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DESCRIBING DISTRIBUTIONAL ATTRIBUTES

A mixture of Gaussian distribution (gray), and a mixture of Beta distributions (blue)
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DESCRIBING DISTRIBUTIONAL ATTRIBUTES

A mixture of Gaussian distribution (gray), and a mixture of Beta distributions (blue)

STATISTICAL MOMENTS MAY NOT ALWAYS CAPTURE THE FULL DISTRIBUTIONAL DIFFERENCE
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KSD

Kolmogorov-Smirnov 
Discretization



10 NETAI 2018 JOHAN GARCIA180824

KSD ALGORITHM EXAMPLE

• PDF of two 
Gaussian mixtures

• CDF
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KSD ALGORITHM EXAMPLE 

• Add text and 
formulas from LyX
screeshot
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LINEAR VS KSD BINNING OF PACKET SIZE DISTRIBUTIONS
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Synthetic evaluation
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SYNTHETIC EVALUATION APPROACH

• Discretization: Linear, probabilistic, MDLP, KSD, KSD_NMDLP

• Distribution separation evaluation metric: 
Jensen-Shannon distance, Chi2, Kullback Leibler-divergence

• Random forest classification evaluation metric:   ROC-AUC

• Number of runs for JSD (Random forest) evaluation:

1000  (200)  Realizations of distribution mixtures

12 (5) instantiation of different nr of samples 12-5000 (10-100)

•
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JENSEN-SHANNON DISTANCE OF DISCRETIZERS

• MDLP  & KSD_NMDLP 
best (but have more 
bins)

• KSD better than LIN 
and PROB in most 
cases for same bin nr

• The more complex 
distribution (i.e Beta 
mixtures) gives larger 
difference
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RANDOM FOREST CLASSIFICATION ON SYNTHETIC DATA

• More samples 
(packets) give better 
performance

• Ba+mo (moments) 
consistently bad

• More complex 
distributions give 
worse performance
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Empirical evaluation
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DATA COLLECTION

• Data collected by specially instrumented commercial DPI HW inside live 

cellular network during Feb 2017

• Per-packet data and flow classification labels (i.e ground-truth) collected for 

first 60 seconds of each flow

• 2.1B packets / 834M packets after filtering / 10M flows

• Set of Video and VoIP application labels provided by DPI vendor

• Per-flow features were computed based on this per-packet data
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FEATURES USED IN EVALUATION

• Four feature groups:
fa: Flow attributes – Non-distributional flow features
ba: Basic statistics – Basic distribution-derived features
mo: Statistical moments – Extended distribution-derived features
bn: Histogram-based features – using a specific discretization method
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ACCURACY RESULTS
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ACCURACY RESULTS
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ACCURACY RESULTS

Adap KSD best
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ACCURACY RESULTS

Adap KSD best

Early optimum

Metric matters
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ACCURACY RESULTS

Adap KSD best

Early optimum

Metric matters

Fraction matters
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CONCLUSIONS AND OBSERVATIONS

• Histogram-based distribution-derived features improves on statistical 
moments by achieving: 

• Better classification performance

• Better run-time performance, i.e. lower computational complexity

• Allows for a flexible choice in the number of feature descriptors

• Among the evaluated histogram discretization approaches:

• Adaptive KSD performs best with MDLP quite close

• KSD is designed to allow a flexible number of bins, and has lower
(offline) computational complexity

• Linear and probabilistic discretization falter.

• Nr of initial packets have a noticeable impact on classification performance.

• JSD distance, simulated RForest, and empirical RForest differ (un)expectedly


