Wireless Optimisation via Convex Bandits

Unlicensed LTE/WiFi Coexistence

Cristina Cano and Gergely Neu
Universitat Oberta de Catalunya
Universitat Pompeu Fabra

Sigcomm NetAl 2018

Unlicensed LTE/WiFi Coexistence

Unlicensed LTE

- Mobile traffic demands are exponentially increasing.
- General consensus:
 - Aggregate data rate needs to increase by 1000x!
- This increase may be achieved mainly through gains in:¹
 - Densification (small cells).
 - Advances in MIMO.
 - Wide spectrum: mmWave and the unlicensed 5GHz band.
 - Offloading using other technologies vs. LTE access.

Andrews, Jeffrey G., et al. What will 5G be?. IEEE Journal on Selected Areas in Communications, Special Issue on 5G Communication Systems. Editorial/Tutorial Paper. September 2014. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Coexistence of Unlicensed LTE and WiFi

- LTE and WiFi channel accesses are very different in nature:
 - LTE uses a scheduled-based approach.
 - WiFi abides to polite rules (random access).
- Along with unmodified LTE WiFi networks can starve.
- Concerns have been raised from the WiFi Alliance and FCC.
- Coexistence mechanisms are required.

Fair Sharing

Fairness guarantees

- How to divide resources to be fair to both networks?
- What does fairness even mean?
- We take a proportional fair approach:²
 - Intuitively, give more resources to more efficient devices...
 - ...as far as no other is too penalised from that.
 - Popular due to its analytical tractability as well.

² C. Cano and D. J. Leith, *Unlicensed LTE/WiFi Coexistence: Is LBT Inherently Fairer Than CSAT?* in IEEE International Conference on Communication (ICC), 2016.

Proportional fair allocation

Convex optimisation problem:

$$\max_{\tilde{s}_{\text{wifi},j}, \tilde{s}_{\text{LTE}}, \tilde{z}} \tilde{s}_{\text{LTE}} + \sum_{j=1}^{n} \tilde{s}_{\text{wifi},j}$$

$$s.t. \quad \tilde{s}_{\text{wifi},j} - \log s_j - \tilde{z} + \log(T_{\text{on}} + c_1 + e^{\tilde{z}}) \leq 0, \ j = 1, \dots, n$$

$$\tilde{s}_{\text{LTE}} - \log q + \log(T_{\text{on}} + c_1 + e^{\tilde{z}}) \leq 0,$$

where $z=\bar{T}_{\rm off}-c_1$, $q:=r(T_{\rm on}-c_2)$ and c_1 and c_2 are constants that capture the heterogeneity cost.

Applying Bandits

Change of traditional paradigm

- Move from characterising the network behaviour.
 - Which requires assumptions and inferring parameters.
- To learn the fair configuration by interacting with the environment.
- Can we benefit from the problem being convex?
 - Many wireless optimisation problems are formulated as convex.

Bandit convex optimisation

- General idea:
 - Repeated game in which the adversary is constrained to select convex cost functions.
 - Interested in guaranteeing that the cumulative sum of the incurred losses is as small as possible (low regret).
- Benefits:
 - Intrinsically handles network dynamics.
 - Only the variable to optimize is needed as input.

BCO State-of-the-art

- Algorithms use gradient descent without a gradient:
 - Feed gradient descent with an estimation of the gradient.
 - Pioneered by Flaxman.³
 - Followed by many refined versions.⁴
- None of these are practical:
 - Single-point estimations have **high variance** in practice.
 - Multi-point estimations require sampling the function multiple times per round.

³ A. Flaxman, A. Kalai, and B. McMahan, *Online convex optimization in the bandit setting: Gradient descent without a gradient* in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005, pp. 385-394.

⁴ X. Hu, L. Prashanth, A. Gyrgy, and C. Szepesvri, (bandit) convex optimization with biased noisy gradient oracles, in Artificial Intelligence and Statistics, 2016, pp. 819828.

Sequential BCO

- We use multi-point estimation ideas by Agarwal.⁵
 - But combine queries from **two consecutive rounds**.
- Results:
 - If the functions change arbitrarily:
 - Matches best single-point known results: $O\left(T^{3/4}\right)$.
 - If the function changes infrequently:⁶
 - Same regret bound as Agarwal: $O\left(\sqrt{T}\right)$.

⁵ A. Agarwal, O. Dekel, and L. Xiao, Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback. in COLT, 2010, pp. 2840.

⁶ At most N times in T with N << T.

Formulation of our Example as a BCO Problem

Repeated Game

- In each round $t = 1, 2, \dots, T$:
 - The player chooses a point $\tilde{z}_t \in \mathcal{K}$.
 - The adversary independently chooses $f_t \in \mathcal{F}$.
 - The player observes $f_t(\tilde{z}_t)$.
- The decision set K is convex.
- All functions in \mathcal{F} are convex in \tilde{z}_t .

Experimental Results

Convergence and sensitivity to learning parameters

Figure: $\omega = 0.01$.

Convergence and sensitivity to learning parameters

Figure: $\omega = 1$.

Adaptability to network dynamics

Figure: n increases in 1.

Noisy estimates

• Cost function vs. simulator evaluations.

Final Remarks

- Many network problems are formulated as convex.
- Bandit Convex Optimisation can ease implementation.
 - Only the variable to optimise is needed as input.
 - Handles network dynamics intrinsically.
- Still much research ahead.
 - Explore single-point estimation further.
 - Methods to deal with noisy estimates.
 - Higher dimension problems.

