
Deep-Q: Traffic-driven QoS Inference using 
Deep Generative Network

Shihan Xiao, Dongdong He, Zhibo Gong

Network Technology Lab, 

Huawei Technologies Co., Ltd., Beijing, China

1



• What is a QoS Model?

Background

Traffic 

Network

Delay, jitter, packet loss…QoS Model



• Why is it important?
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A QoS model helps reduce most of the cost!
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A QoS model can do QoS inference 
without QoS measurements
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Traditional Methods
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Traffic

Network

Delay, jitter, packet loss
Network 
Simulator

NS2, NS3, 
OMNeT++…

Slow and Inaccurate

• 1. Network simulator



• 2. Mathematical modeling

Traditional Methods
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• 2. Mathematical modeling

Traditional Methods
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Simplified 
assumptions

A fast, accurate & low-cost QoS model is helpful!

Large human-analysis cost & Inaccurate



Key Observations

• Observation 1: Traffic load per link is much easier to collect & well-
supported by existing tools (e.g., SNMP) than QoS values per path
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Key Observations

• Observation 1: Traffic load per link is much easier to collect & well-
supported by existing tools (e.g., SNMP) than QoS values per path

• Observation 2: Traffic load is the key factor of QoS changes
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Key Observations

• Observation 3: Different traffic loads lead to different QoS distributions
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Testbed measurement
40 traffic loads (per 20 min)

Measured delay samples



Key Observations

• Target Problem: Given a set of traffic load matrixes during time T, what are the 
distributions of QoS values (delay, jitter, loss...) of each network path during T?
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Different traffic loads lead to different QoS distributions



Solution of Deep-Q

• Why deep learning helps?
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Data-driven VS. Human-engineered model

Low human-analysis cost Fast inference

Network 
SimulatorPackets QoS values

Running time of Hours!

QoS values

Running time of Milliseconds!

…

… …

Traffic load matrix

Delay model

Loss model

…

Auto
Training

Delay/Jitter/Loss
…



Key Technology: Deep Generative Network

• State-of-the-art DGNs in deep learning
– GAN(Generative Adversarial Network) & VAE(Variational Autoencoder)
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Input: “this small bird has a pink breast and 
crown, and black primaries and secondaries”

infer

Source: ICML2016, “Generative Adversarial Text to Image Synthesis”

infer

Input: number 2

(Conditional) GAN Example (Conditional) VAE Example

Source: NIPS2014, “Semi-supervised Learning with Deep Generative Models”

Input: traffic load matrixes
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So what is the difference?



Key Technology: Deep Generative Network

• Differences
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Discrete Label Image samples Traffic statistics QoS values

Input

Discrete & 
Low/high Dimensional

Discrete & 
High Dimensional

Output Input Output

Continuous & 
High Dimensional

Continuous & 
Low Dimensional

Image domain
(GAN & VAE)

Network domain
(Deep-Q)

Target: the generated image samples satisfy “real” image 
distribution and match the label class

Target: the generated QoS values satisfy real QoS distribution 
and match the traffic statistics

Deep-Q requires a high accuracy on the output distribution, but GAN & VAE do not apply!

Application: text label to images Application: traffic load matrixes to QoS values



Deep-Q Solution

• 1. Handle the continuous high-dimensional input
– Extract traffic features from a sequence of high-dimensional traffic load matrixes
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LSTM (Long Short Term Memory) module: a state-of-the-art deep learning method to learn features from a data sequence
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• 2. Handle the continuous low-dimensional output
– Challenge: high accuracy is required for QoS distribution inference

– Solution: a new metric “Cinfer loss” to accurately quantify the QoS distribution error

Deep-Q Solution
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CDF curve of X CDF curve of Y

X: Inferred QoS distribution
Y: Target QoS distribution
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Deep-Q Solution

• Deep-Q: A stable & accurate inference engine

– Built upon VAE (Stable) and augmented with Cinfer Loss (Accurate)
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L2 Loss of VAE KL Loss of GAN Cinfer Loss of Deep-Q

VAE: Stable but Inaccurate GAN: More accurate but unstable Deep-Q: Stable & Accurate

A simple example of learning ability:
Target distribution
Inferred distribution



Deep-Q Solution

• Cinfer-Loss computation for training
– The exact computation is NP-hard

– The approximation must be fully differentiable to compute gradients for training

• Step 1: Discretization
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From integral to a discrete sum of bins



Deep-Q Solution

• Cinfer-Loss computation for training
– The exact computation is NP-hard

– The approximation must be fully differentiable to compute gradients for training

• Step 2: Bin Height Computation– required to be differentiable

• An intuitive method:
– Calculate the located bin index of each sample & Count the sample number per bin
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Ceil function is non-differentiable & difficult to approximate!



Deep-Q Solution

• Cinfer-Loss computation for training
– The exact computation is NP-hard

– The approximation must be fully differentiable to compute gradients for training

• Step 2: Bin Height Computation– required to be differentiable

• A differentiable method with some math tricks (borrowed from deep learning)
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Step 2):  Approximate 𝑆𝑖𝑔𝑛 function with 𝑡𝑎𝑛ℎ

Approximation error< 10−5 in experiments

Step 1):  Use 𝑆𝑖𝑔𝑛 function



Deep-Q Solution

• Put it all together
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• Testbed Topology

• Traffic traces: WIDE backbone network [1]

– Training set: 24 hours of traffic traces on April 12, 2017

– Test set: 24 hours of traffic traces on April 13, 2017

• Neural network: TensorFlow implementation with 2 hidden layers

Experiment Setup

23
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r0

r1
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r3
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Internet

AS-2

r4

NEU200 Probe NEU200 Probe

NEU200 Probe NEU200 Probe

Experiment topology of data center network Experiment topology of overlay IP network

[1] Traffic traces are public available at http://mawi.wide.ad.jp/mawi/



Experiment Results

• Delay Inference in Datacenter Topology
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Traffic

Real delay

Distribution error of inference

Mean error of inference

90-percentile error of inference

99-percentile error of inference

Queuing theory Deep learning

1. Deep learning methods achieve on average 3x higher accuracy over Queuing theory
2. Deep-Q achieves the lowest errors and most stable performance over all cases



Experiment Results

• Packet Loss Inference in Overlay IP Topology
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1. Deep learning methods achieve on average 3x higher accuracy over Queuing theory
2. Deep-Q achieves the lowest errors and most stable performance over all cases

Queuing theory Deep learning

Deep-Q inference speed < 10ms for network scale < 200 nodes



Conclusion

• Deep-Q: an accurate, fast and low-cost QoS inference engine
– Automation: LSTM module for auto traffic feature extraction 

– High stability: an extended VAE inference structure with the encoder and decoder

– High accuracy: a new metric “Cinfer loss” to accurately quantify the QoS distribution error

• Future vision: 
– Learn device-level QoS models (routers/switches) → scalable network-level QoS models

– Learn high-level application QoE from traffic traces

26



27


