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Motivation
Many users call customer service centers when a network problem occurs

Definitions: 
Event: a service-impacting network problem that affects multiple users, typically within a bounded 
geographic area, e.g., a network outage 
Case: Agent-generated summary of user’s problems, troubleshooting steps taken and results. 
Question: Can we mine cases to understand user perspective of network events? 



Problem Statement
Definitions:
– Event-specific Cases: Cases pertaining to a network event
– Normal Cases: Cases that do not pertain to an event

Natural machine learning problem, however: 
– Manually labeling data is infeasible at scale: supervised learning
– Individual event makes up tiny fraction of total cases: unsupervised learning
– Feasible to get a few labeled event cases: semi-supervised learning 

Problem Statement: Given an event e, a set U of unlabeled cases and a set L with a few 
labeled event-specific cases and normal cases, find other cases pertaining to e from U



Challenges
User-sourced data noise
– Inaccuracy in reporting symptoms
– Symptoms dependent on device model, OS etc.
– Different symptoms at different locations
– Approximation of times observed symptoms
– Location data available at zip code granularity

Agent-sourced data noise
– Differences in writing style and language
– Different details of problem/debugging recorded
– Domain-specific abbreviations and language used
– Differences in understanding of network event
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Data Characteristics: Case Definition

Problem Characteristics

Device Characteristics

Agent Details

Problem Resolution

ZipcodeTimestamp
Free Text:
• Problem Symptoms 
• Debugging Steps
• Current Status

Case Attributes Case Notes

…

Symptom information potentially duplicated in attributes and case notes!



Data Characteristics: Case Attribute Statistics

Extremely large number of case 
attribute combinations!

No. of possible values for most 
relevant attributes

No. of similar values for Calltypes
describing various problems

Table 1 Table 2

Many similar values in case 
attributes!



Data Characteristics: Case Notes

Observations:
– Many abbreviations and spelling errors for each word
– Often written concisely, as quickly as possible, so may miss key details
– Have unusual vocabulary, sentence structure and idiosyncrasies. 

Language models trained on regular English cannot be used!
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LOTUS Overview

Spatial Localization

Learning from 
Attribute Features

Learning from 
Text Features

Data Feature 
Extraction

&
keywords

Event 
IntrxnKeyword 

extraction

Co-training

Keep locations fixed, 
learn symptoms

Keep symptoms fixed, 
learn locations



Feature Extraction
Convert each case to an example:

- Location
- Features of case attributes: standard one-hot encoding
- Features of case notes: word vectors [Mikolov+13]

Word vectors: Distributed representation of word/phrase using its context
For example:

“Customer wants to know why he cannot dial outgoing numbers successfully”

“Cx unable to make calls”

Why does it work on our data?

- Repetitive sentence structure 

- Mixture of styles and vocabulary in sentences

Distributed Representations of Words and Phrases and their Compositionality. Mikolov, Tomas and Sutskever, 
Ilya and Chen, Kai and Corrado, Greg S and Dean, Jeff. NIPS 2013

cx
customer

cust

devicephone ph

Sample word vectors in unit 
n-dimensional cube [0,1]n

prob issue

problem



Co-training
Step overview: Location fixed, want to learn symptoms
Available initially: A few labeled cases and a lot of unlabeled cases
Learning model: 
- Each case has both attribute features and text features
- Both attributes and text individually describe symptom and/or resolution

Thus, attributes and text each individually sufficient to judge whether case is event-specific 
Co-training idea [Blum+98]:
- Simultaneously learn separate functions over attribute features and over text features
- Use learning over attribute features to bootstrap better learning over text features and vice versa

Event 
Cases

Normal 
Cases

Unlabeled Cases

Co-training iteration 1 Co-training iteration 2

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT 1998.



Spatial Localization
Step overview: Symptoms fixed, want to learn location
Satscan [Kuldorff97]: Algorithm and software for computing spatial scan statistics to identify clusters of 
spatially correlated cases
- Uses likelihood ratio tests for common statistical models
- Normalizes for inhomogeneous population sizes

Kulldorff M., A spatial scan statistic. Communications in Statistics: Theory and Methods, 1997; 26:1481-1496.  https://www.satscan.org/

Sample synthetic clusters
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Experimental Setup
Synthetic Events to Measure Accuracy: 
Procedure for creation of synthetic data
– Choose from a fixed possible combination of attributes 
– Choose text that matches attributes from real event cases
– Choose zipcode based on population of affected area
– Background data for synthetic events: 350k normal cases

Baseline Algorithm:
– Supervised learning algorithm based on case attributes and case notes features
– Ensemble classifier to allow ease of fitting complex hypotheses

Run-time: 
– About 10-20 minutes for typical run: around 1-2 days, 2-4 states
– Over 80% of time is spatial scan analysis (SatScan) 



LOTUS Accuracy on Synthetic Events
Experimented on three types of synthetic events: 
– Synthetic Event 1: Single fixed location, multiple fixed symptoms
– Synthetic Event 2: Multiple locations, changing symptoms
– Synthetic Event 3: Multiple locations, changing symptoms x 2

LOTUS precision & recall significantly exceed baseline in all cases!



LOTUS Results on Live Data
Two sample case studies:
Case Study 1

– Symptoms: all services affected, mainly voice + data complaints

– Locations: multiple metro areas

– Networks affected: 3G and LTE

Case Study 2
– Symptoms: only data issues

– Locations: multiple metro areas

– Networks affected: 3G and LTE

Observations:
- Over 75% of known event cases detected in both studies

- 97% of detected cases validated as event cases

- Keywords reflect event and symptom parameters



Conclusions
Presented LOTUS system to assess impact of network events from user feedback
Novel algorithmic composition of semi-supervised learning and spatial scan statistics 
Analyzes typical network events in 10-20 minutes with high accuracy

Questions? 


