The Network is The Computer: Running Distributed Services on Programmable Switches

Robert Soulé

Università della Svizzera italiana and Barefoot Networks

Conventional Wisdom

- The network is "just plumbing"
- Teach systems grad students the end-to-end principle [Saltzer, Reed, and Clark, 1981]
- Programmable networks are too expensive, too slow, or consume too much power

This Has Changed

A new breed of switch is now available:

- They are programmable
- No power or cost penalties
- They are just as fast as fixed-function devices (6.5 Tbps!)*

* Yes, I work at Barefoot Networks.

If This Trend Continues...

Programmable ASICs will replace fixed-function chips in data centers

What Functionality Belongs in the Network?

Congestion Control

Fault-tolerance

Key-Value Store

Stream Processing

Run important, widely used distributed services in the network

A 10,000X
improvement in throughput

[NetPaxos SOSR '15, P4xos CCR '16]

2 billion

queries / second

with 50% reduction

in latency

Key-Value Store

[NetCache, NSDI '17]

Process

4 billion

events per second.

Stream Processing

[Linear Road, SOSR '18]

Key Questions

This sounds good on paper, but...

- How do we actually program network devices?
 What are the limitations? What are the abstractions?
- What (parts of) applications could or should be in the network?
 What is the right architecture?
- Given that we are asking the network to do so much more work, how can we be sure that it is implemented correctly?

Agenda and Tools

Leverage emerging hardware...

... to accelerate distributed services...

... and prove that the implementations are correct.

Programmable network hardware

Distributed applications

This talk

Logic and formal methods

Outline of This Talk

- Introduction
- Programmable Network Hardware
- Co-designing Networks and Distributed Systems
- Proving Correctness
- Outlook

Programmable Network Hardware

What is A Programmable Network?

-

What is A Programmable Network?

-

-

Match Action Table

Match	Action
	-

Data plane programming specifies:

- fields to read
- possible actions
- size of table

Main abstraction for data plane programming

+

 \oplus

Match Action Table

Match	Action	
10.0.0.1	Drop	
10.0.0.2	Forward out 1	
10.0.0.3	Forward out 2	
10.0.0.4	Modify header	

Control plane programming specifies the rules in the table

Match Action Unit

Match

- SRAM for exact match
- TCAM for ternary match

Match Action Unit

Action

- Stateless ALU
 - Limited instruction set
 - Arithmetic operations
 - Bitwise operations
- Stateful ALU
 - Counters
 - Meters

Massively Parallelized:

- Data Parallelism for performance
- Pipelined stages for data dependencies

Programmable Data Plane

Programmable ASIC Architecture

+

 \rightarrow

Target Constraints

Target Constraints **Fixed-length** pipeline Match. Match Match Match Action Action Action Action Match Match Match Match Queues De-Action Action Action Action Parser and Parser Crossbar Match Match Match Match Action Action Action Action Limited Memory

Observations

- Architecture is designed for speed and efficiency
- Performance doesn't come for free
 - Limited degree of programmability
 - Not Turing complete by design
- Language syntax and hardware generations may change, but the basic design is fundamental

Co-Designing Networks and Distributed Systems

What Applications Should We Put in the Network?

Fundamental Building Blocks

Building Blocks For Distributed Systems

Building Block	Description	System
Consensus	Essential for building fault- tolerant, replicated systems	NetPaxos SOSR '15 P4xos, CCR '16
Caching	Maximize utilization of available resources	NetCache, SOSP '17 NetChain, NSDI '18
Data Processing	In-network computation and analytics	Linear Road, SOSR '18
Publish/ Subscribe	Semantically meaningful communication	In submission

Consensus Protocols

- Get a group of replicas to agree on next application state
- Consensus protocols are the foundation for fault-tolerant systems
 - E.g., OpenReplica, Ceph, Chubby
- Many distributed systems problems can be reduced to consensus
 - L.g., Atomic broadcast, atomic commit

Ways to Improve Consensus Performance

Consensus

Programmable

Networks

Enforce particular network behavior

Push logic into network hardware

Consensus / Network Design Space

Forward packets

Storage and logic

-

Consensus / Network Design Space

No message loss, FIFO delivery Assumptions **Fast Paxos Traditional Paxos Best** effort **Programmability** Strong Weak

Forward packets

Storage and logic

+

Consensus / Network Design Space

Forward packets

Storage and logic

+

Forward packets

Storage and logic

+

Forward packets

Storage and logic

Forward packets

Storage and logic

No message loss, FIFO **NetPaxos** delivery Assumptions **Speculative Fast** Paxos / **Paxos** No Paxos **Traditional** Protocol 4 **Paxos Best** effort **Programmability** Strong Weak

Forward packets

Storage and logic

No message loss, FIFO **NetPaxos** delivery Assumptions **Speculative Fast** Paxos / **Paxos** No Paxos **Traditional** P4xos **Paxos** (this talk) **Best** effort **Programmability** Weak Strong

Forward packets

Storage and logic

+

Paxos

Of the various consensus protocols, we focus on Paxos because:

- One of the most widely used
- Often considered the "gold standard"
- Proven correct

"There are two kinds of consensus protocols: those that are Paxos, and those that are incorrect"

attributed to Butler Lampson

Paxos In the Network

Key questions:

- What parts of Paxos should be accelerated?
- How to map the algorithm to stateful forwarding decisions (i.e., Paxos logic as sequence of match/actions)?
- How do we map from complex protocol to low-level abstractions?
- What are the right interfaces? How do we deploy?

Paxos in a Nutshell

- An execution of Paxos is called an instance. Each instance is associated with an ID, called the instance number.
- The protocol has two phases. Each phase may contain multiple rounds. There is a round number to identify the round.
 - Phase 1: "What instance number are we talking about?"
 - Phase 2: "What is the value for the instance number?"
- ♣ Observation: Phase 1 does not depend on a particular value.
 We should accelerate Phase 2.

Run
Phase 1
in a batch,
declare the
instance
numbers
to use

· vround

round

value

Union of all Paxos messages

When batch fills up, we need to checkpoint

Paxos
Packets

n

m

+

—

Phase 2 Roles and Communication

- Proposers propose a value via the Coordinator (Phase 2).
- Acceptors accept value, promise not to accept any more proposals for instance (Phase 2).
- Learners require a quorum of messages from Acceptors, "deliver" a value (Phase 2).

 \Rightarrow

\rightarrow

Paxos Bottlenecks

Observation: accelerate agreement: Coordinator and Acceptors

Paxos as Prose

- 1. (a) If crnd[c] < i, then c starts round i by setting crnd[c] to i, setting cval[c] to none, and sending a message to each acceptor a requesting that a participate in round i.
 - (b) If an acceptor a receives a request to participate in round i and i > rnd[a], then a sets rnd[a] to i and sends coordinator c a message containing the round number i and the current values of vrnd[a] and vval[a].

If $i \leq rnd[a]$ (so a has begun round i or a higher-numbered round), then a ignores the request.

[Lamport, Distributed Computing '06]

Paxos as Match-Action

```
1: Initialize State:
       instance[1] := \{0\}
 3: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
       match pkt.msgtype:
 4:
          case REQUEST:
 5:
            pkt.msgtype \leftarrow PHASE2A
            pkt.rnd \leftarrow 0
            pkt.inst \leftarrow instance[0]
             instance[0] := instance[0] + 1
 9:
             multicast pkt
10:
          default:
11:
             drop pkt
12:
```

Coordinator Algorithm

+

Paxos as Match-Action

Application Interface

API Function Names	Description
submit	Application to network: Send a value
deliver	Network to application: Deliver a value
recover	Application to network: Discover a prior value

C wrapper provides a drop-in replacement for existing Paxos libraries!

P4xos Deployment

Experiments

Focus on two questions:

What is the absolute performance?

What is the end-to-end performance?

Absolute Performance

- Measured each role separately on 64x40G ToR switch (Barefoot Tofino) and IXIA XGS12-H as packet sender
- Throughput is over 2.5 billion consensus messages / second. This is a 10,000x improvement over software.
- Data plane latency is less than 0.1 μs (measured inside the chip)

End-to-End Performance

- Application delivers to RocksDB with read and write commands
- 4.3x throughput improvement over software implementation
- **73% reduction in latency**

Accelerating Execution (Work-in-Progress)

partition

Accelerating Execution (Work-in-Progress)

- Not yet done: handling "cross partition" requests
- Must add barriers to synchronize learners
- Fully partitioned workload reaches 500K msgs/sec

RocksDB Throughput vs. Checkpoint Interval

Practical Application: Storage Class Memory

Fast network interconnect allows users to scale storage and compute separately (i.e., disaggregated storage)

- Several companies, including Western Digital, have developed new types of non-volatile memory
 - Persistent, with latency comparable to DRAM
 - But, wears out over time...
- Use in-network consensus to keep replicas consistent

To Recap

No message loss, FIFO delivery suoitdunssy

Best effort

NetPaxos
Paxos!"

Fast Speculative No Paxos Paxos

Traditional Paxos

P4xos

Weak Programmability

Strong

Forward packets

Storage and logic

To Recap

Forward packets

Storage and logic

Proving Correctness (or How Do We Know Our Implementation is Correct?)

An Old Story You've Heard Before

- We checked the Paxos algorithm with SPIN model checker. No problems!
- **We wrote the Paxos code.**
- We ran in the network, but didn't get consensus.

There is a bug in our implementation.

Verification is So Tempting...

- To the extent networks are verified, the focus is on forwarding (e.g., no path loops)
- If the network is going to take on more work, how can we be sure that is correct?
- P4 is so tempting to verify: no loops, no pointers, etc.

Verification Problem

The specific behavior of a P4 Rules program depends on the control plane **Control Plane Data Plane** We only have half the program! P4

 \oplus

Hoare Logic

Axioms capture relational properties: what is true before and after a command executes.

⊢ {**P**} c {**Q**}

If P holds and c executes, then Q holds.

- Standard approach to verification
- Use automated theorem-prover to check if there is an initial state that leads to a violation
- Generate a counter example via weakest pre-condition

P4 + Hoare Logic

Axioms capture relational properties: what is true before and after a command executes.

├ { P + "control plane assumptions"} c { Q }

If P plus some assumed knowledge holds and c executes, then Q holds.

- Allow programmers to express symbolic constraints on the control plane in terms of predicates on data plane state
- Combined, the control plane and data plane behave as expected

Verification Challenges

Challenge P4 does not have a formal semantics What should the annotations look like? How do we make the solver scale? We had to define one via translation Leveraged our domain-specific knowledge to define language Standing on the shoulders of giants, e.g., passivization [Flanagan and Saxe, POPL 2001]

P4v: Basic Approach

```
action forward(p) { ... }
table T {
  reads {
    tcp.dstPort;
    eth.type;}
  actions {
    drop;
  forward; } }
```

Translate P4
to logical
formulas

Define a program logic for P4

Desired Property:

"If the tcp.dstPort is 22, then drop the packet."

Annotate to check for properties

Reduce to SMT problem

P4v: Basic Approach

```
action forward(p) { ... }
table T {
  reads {
    tcp.dstPort;
    eth.type;}
  actions {
    drop;
  forward; } }
```

Translate P4
to logical
formulas

Define a program logic for P4

Desired Property:

"If the round number of arriving packet is greater than the stored round number, then drop the packet."

Annotate to check for properties

Reduce to SMT problem

CCR Paper Bug

```
@pragma assume valid(paxos) implies local.round <= paxos.rnd
apply(rount_table) {
  if (local.round <= paxos.rnd) { apply(acceptor_table) }
}
@pragma assert valid(paxos) implies local.set_drop == 0</pre>
```

Action failed to set the "drop flag" when the arriving round number is greater than the stored round number.

Evaluation

- Ran our verifier on a diverse collection of 13 P4 programs
 - Conventional forwarding: Router, NAT, Switch
 - Source routing: ToR, VPC
 - In-network processing: Paxos, LinearRoad
- Most finished in 10s of ms; switch.p4 finished in 15 seconds.

Only system to verify switch.p4

Outlook

Summarizing

- System artifact that can achieve orders-of-magnitude improvements in performance
 - Identified techniques for programming within fundamental hardware constraints
- Novel re-interpretation of the Paxos algorithm
 - Hopefully add clarity through a different perspective
- Mechanized proof of correctness of the implementation

A Few Lessons Learned

- What are good candidate applications for network acceleration?
 - "Squint a little bit, and they look like routing"
 - Applications with transient state, rather than persistent
 - Services that are I/O bound
 - Network acceleration helps latency, but throughput is the big win

What's Next?

- Very exciting time for networking and systems
- Network programmability provides an amazing opportunity to revisit the entire stack
- Redesign systems using an integrated approach, combining databases, networking, distributed systems, and PL

http://www.inf.usi.ch/faculty/soule/

