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Conventional Wisdom

The network is “just plumbing” 

Teach systems grad students  
the end-to-end principle 
[Saltzer, Reed, and Clark, 1981] 

Programmable networks are  
too expensive, too slow,  
or consume too much power
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This Has Changed
A new breed of switch is now available: 

They are programmable 

No power or cost penalties 

They are just as fast as  
fixed-function devices  
(6.5 Tbps!)*
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* Yes, I work at Barefoot Networks.



If This Trend Continues…
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GPUs DSPs TPUs ASICsCPUs

Java OpenCL MatLab TensorFlow ?

Programmable ASICs will replace  
fixed-function chips in data centers



What Functionality  
Belongs in the Network?
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Congestion ControlLoad Balancing Firewall



Tremendous Opportunity
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Stream ProcessingFault-tolerance Key-Value Store

Run important, widely used  
distributed services in the network



Tremendous Opportunity
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Fault-tolerance

A 10,000x 
improvement in 

throughput

[NetPaxos SOSR ’15, P4xos CCR ’16]



Tremendous Opportunity
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2 billion 
queries / second 

Key-Value Store
with 50% 

reduction 
in latency

[NetCache, NSDI ’17]



Tremendous Opportunity
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Stream Processing

Process  

4 billion 
events  

per second.

[Linear Road, SOSR ’18]



Key Questions

This sounds good on paper, but… 

How do we actually program network devices?  
What are the limitations? What are the abstractions? 

What (parts of) applications could or should be in the network?  
What is the right architecture? 

Given that we are asking the network to do so much more work,  
how can we be sure that it is implemented correctly?
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Agenda and Tools
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Programmable 
network 

hardware

Distributed 
applications

This 
talk

Logic and 
formal methods

Leverage  
emerging hardware… 

… to accelerate  
distributed services… 

… and prove that the 
implementations are correct.



Outline of This Talk

Introduction 

Programmable Network Hardware 

Co-designing Networks  
and Distributed Systems 

Proving Correctness 

Outlook
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Programmable  
Network 
Hardware
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What is A  
Programmable Network?
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Data Plane

Control Plane

“If ip.dst is 10.0.0.1,   
forward out port 1”

Packets

Rules



What is A  
Programmable Network?
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Data Plane

Control Plane

Packets

CompilerSource 
Language

RulesSource 
Language Compiler

e.g., Merlin  
[CoNext ’14]

e.g., P4FPGA  
[SOSR ’17]

Controller



Match Action Table
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Match Action

Data plane 
programming 
specifies: 
- fields to read 
- possible actions 
- size of table

{

Main abstraction for data plane programming



Match Action Table
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Match Action

10.0.0.1 Drop

10.0.0.2 Forward out 1

10.0.0.3 Forward out 2

10.0.0.4 Modify header

Control plane 
programming 
specifies 
the rules in 
the table

{



Match Action Unit
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Match 
Action 
Unit

• SRAM for exact match 
• TCAM for ternary match

Match Action
• Stateless ALU 

• Limited instruction set 
• Arithmetic operations 
• Bitwise operations 

• Stateful ALU 
• Counters 
• Meters

• Data Parallelism for performance 
• Pipelined stages for data dependencies

Massively Parallelized:



Programmable Data Plane
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P4 Language Concepts
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P4 Language Concepts
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Target Constraints
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Observations

Architecture is designed for speed and efficiency 

Performance doesn’t come for free 

Limited degree of programmability 

Not Turing complete by design 

Language syntax and hardware generations may change, 
but the basic design is fundamental
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Co-Designing 
Networks and  
Distributed Systems

�23



What Applications  
Should We Put in the Network?
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Monte Carlo Simulation Fundamental Building Blocks



Building Blocks 
For Distributed Systems
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Building Block Description System

Consensus
Essential for building fault-

tolerant, replicated 
systems

NetPaxos SOSR ’15 
P4xos, CCR ’16

Caching Maximize utilization of 
available resources

NetCache, SOSP ’17 
NetChain, NSDI ’18

Data Processing In-network computation 
and analytics Linear Road, SOSR ’18

Publish/ 
Subscribe

Semantically meaningful 
communication In submission



Consensus Protocols

Get a group of replicas to agree on next application state 

Consensus protocols are the foundation for fault-tolerant systems 

E.g., OpenReplica, Ceph, Chubby 

Many distributed systems problems can be reduced to consensus 

E.g., Atomic broadcast, atomic commit
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Ways to Improve  
Consensus Performance 
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Consensus 
Protocols

Programmable 
Networks

Push logic  
into network 

hardware

Enforce  
particular  
network 
behavior



Consensus /  
Network Design Space
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99.9% of the time, 
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Protocol 3

Protocol 4

NetPaxos

Promising, but 
99.9% correct consensus 

isn’t practical
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ProgrammabilityWeak Strong

Traditional 
Paxos

As
su

m
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io
ns

NetPaxos
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effort

No message  
loss, FIFO  
delivery

P4xos 
(this talk)

Fast  
Paxos

Forward packets Storage and logic

Speculative  
Paxos /  

No Paxos



Paxos
Of the various consensus protocols,  
we focus on Paxos because: 

One of the most widely used  

Often considered the “gold standard” 

Proven correct 

“There are two kinds of consensus protocols: those that are  
    Paxos, and those that are incorrect” 
                                             — attributed to Butler Lampson
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Paxos In the Network

Key questions: 

What parts of Paxos should be accelerated? 

How to map the algorithm to stateful forwarding decisions  
(i.e., Paxos logic as sequence of match/actions)? 

How do we map from complex protocol to low-level abstractions? 

What are the right interfaces? How do we deploy?
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Paxos in a Nutshell

An execution of Paxos is called an instance. Each instance is  
associated with an ID, called the instance number. 

The protocol has two phases. Each phase may contain multiple 
rounds. There is a round number to identify the round. 

Phase 1: “What instance number are we talking about?” 

Phase 2: “What is the value for the instance number?” 

Observation: Phase 1 does not depend on a particular value.  
We should accelerate Phase 2.
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Paxos In The Switch
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n m

Paxos 
Packets

Run  
Phase 1 
in a batch,  
declare the  
instance  
numbers 
to use

{
• type 
• instance 
• round 
• vround 
• value

Union of all 
Paxos messages{
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Paxos In The Switch
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n m

Paxos 
Packets

When batch fills up,  
we need to checkpoint

Tradeoff  
with performance 

and memory

Access 
dependencies make it 
hard to implement ring 

buffer 

Need 
to use “hacks” to 
trick the compiler 



Phase 2 Roles  
and Communication
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Coordinator

Acceptor 1

. . .

Acceptor 2  

Acceptor 3  

Learners

. . .

(up to n)  

Proposer

Phase 2B

Phase 2B

Phase 2B

Phase 2A

Proposal
Proposers propose a value via 
the Coordinator (Phase 2). 

Acceptors accept value, 
promise not to accept any more 
proposals for instance (Phase 2). 

 Learners require a quorum  
of messages from Acceptors, 
“deliver” a value (Phase 2).



Paxos Bottlenecks
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Observation: accelerate agreement: 
Coordinator and Acceptors
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Paxos as Prose
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[Lamport, Distributed Computing ’06]



Paxos as Match-Action
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1 void submit(struct paxos_ctx* ctx,

2 char* value, int size);

Figure 3: P4xos proposer API.

Algorithm 1 Leader logic.
1: Initialize State:

2: instance[1] := {0}
3: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
4: match pkt.msgtype:
5: case REQUEST:
6: pkt.msgtype PHASE2A
7: pkt.rnd 0
8: pkt.inst instance[0]
9: instance[0] := instance[0] + 1

10: multicast pkt
11: default :
12: drop pkt

Proposer. A P4xos proposer mediates client requests,
and encapsulates the request in a Paxos header. Ideally,
this logic could be implemented by an operating system
kernel network stack, allowing it to add Paxos headers in
the same way that transport protocol headers are added
today. As a proof-of-concept, we have implemented the
proposer as a user-space library that exposes a small API
to client applications.

The P4xos proposer library is a drop-in replacement
for existing software libraries. The API consists of a sin-
gle submit function, shown in Figure 3. The submit
function is called when the application using Paxos to
send a value. The application simply passes a charac-
ter buffer containing the value, and the buffer size. The
paxos ctx struct maintains Paxos-related state across
invocations (e.g., socket file descriptors).
Leader. A leader brokers requests on behalf of pro-
posers. The leader ensures that only one process submits
a message to the protocol for a particular instance (thus
ensuring that the protocol terminates), and imposes an
ordering of messages. When there is a single leader, a
monotonically increasing sequence number can be used
to order the messages. This sequence number is written
to the inst field of the header.

Algorithm 1 shows the pseudocode for the primary
leader implementation. The leader receives REQUEST
messages from the proposer. REQUEST messages only
contain a value. The leader must perform the following:
write the current instance number and an initial round
number into the message header; increment the instance
number for the next invocation; store the value of the new
instance number; and broadcast the packet to acceptors.

P4xos uses a well-known Paxos optimization [14],

where each instance is reserved for the primary leader
at initialization (i.e., round number zero). Thus, the pri-
mary leader does not need to execute Phase 1 before sub-
mitting a value (in a REQUEST message) to the accep-
tors. Since this optimization only works for one leader,
the backup leader must reserve an instance before sub-
mitting a value to the acceptors. To reserve an instance,
the backup leader must send a unique round number in
a PHASE1A message to the acceptors. For brevity, we
omit the backup leader algorithm since it essentially fol-
lows the Paxos protocol.

Acceptor. Acceptors are responsible for choosing a
single value for a particular instance. For each instance
of consensus, each individual acceptor must “vote” for a
value. Acceptors must maintain and access the history
of proposals for which they have voted. This history en-
sures that acceptors never vote for different values for
a particular instance, and allows the protocol to tolerate
lost or duplicate messages.

Algorithm 2 shows logic for an acceptor. Acceptors
can receive either PHASE1A or PHASE2A messages.
Phase 1A messages are used during initialization, and
Phase 2A messages trigger a vote. The logic for han-
dling both messages, when expressed as stateful rout-
ing decisions, involves: (i) reading persistent state, (ii)
modifying packet header fields, (iii) updating the persis-
tent state, and (iv) forwarding the modified packets. The
logic differs in which header fields are involved.

Learner. Learners are responsible for replicating a
value for a given consensus instance. Learners receive
votes from the acceptors, and “deliver” a value if a ma-
jority of votes are the same (i.e., there is a quorum).

Algorithm 3 shows the pseudocode for the learner
logic. Learners should only receive PHASE2B mes-
sages. When a message arrives, each learner extracts
the instance number, switch id, and value. The learner
maintains a mapping from a pair of instance number and
switch id to a value. Each time a new value arrives, the
learner checks for a majority-quorum of acceptor votes.
A majority is equal to f + 1 where f is the number of
faulty acceptors that can be tolerated.

The learner provides the interface between the net-
work consensus and the replicated application. The be-
havior is split between the network, which listens for
a quorum of messages, and a library, which is linked
to the application. To compute a quorum, the learner
counts the number of PHASE2B messages it receives
from different acceptors in a round. If there is no quo-
rum of PHASE2B messages in an instance (e.g., because
the primary leader fails), the learner may need to re-
count PHASE2B messages in a quorum (e.g., after the

5

Coordinator Algorithm



Paxos as Match-Action
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Coordinator

ProposerProposerProposer

AcceptorAcceptorAcceptor

LearnerLearner

Encode value in a packet header.

If match, add sequence number,  
and forward

If match, compare round field in header, 
update state, and forward 

 
De-encode and return value  
to the application.

Application

Network

Network
Application



Application Interface
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API Function Names Description

submit Application to network: 
Send a value 

deliver Network to application: 
Deliver a value

recover Application to network: 
Discover a prior value 

C wrapper provides a drop-in  
replacement for existing Paxos libraries!



P4xos Deployment
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Proposer ToR Aggregate Spine/ 
Coordinator

Aggregate/ 
Acceptor ToR

Learner/ 
Application

vs.Proposer Coordinator

Acceptor Learner/ 
Application



Experiments

Focus on two questions: 

What is the absolute performance? 

What is the end-to-end performance?
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Absolute Performance

Measured each role separately on 64x40G ToR switch  
(Barefoot Tofino) and IXIA XGS12-H as packet sender  

Throughput is over 2.5 billion consensus messages / second. 
This is a 10,000x improvement over software.  

Data plane latency is less than 0.1 μs  
(measured inside the chip)
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End-to-End Performance
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Application delivers to  
RocksDB with read and 
write commands 

4.3x throughput 
improvement over software 
implementation 

73% reduction in latency 0
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Accelerating Execution 
(Work-in-Progress)
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n m

Paxos 
Packets Run  

multiple 
Paxi in  
parallel

{n mn mn m
• type 
• instance 
• round 
• vround 
• value 
• partition

Partition 
application 
state{



Accelerating Execution 
(Work-in-Progress)
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Not yet done: handling 
“cross partition” requests 

Must add barriers to  
synchronize learners 

Fully partitioned workload 
reaches 500K msgs/sec

RocksDB Throughput vs.  
Checkpoint Interval



Practical Application:  
Storage Class Memory

Fast network interconnect allows  
users to scale storage and compute  
separately (i.e., disaggregated storage) 

Several companies, including Western Digital,  
have developed new types of non-volatile memory 

Persistent, with latency comparable to DRAM 

But, wears out over time… 

Use in-network consensus to keep replicas consistent
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“It’s just  
    Paxos!”

But, how can we be  
sure the implementation  

is correct?



Proving Correctness 
(or How Do We Know Our 
Implementation is Correct?)
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An Old Story  
You’ve Heard Before

We checked the Paxos 
algorithm with SPIN model 
checker. No problems! 

We wrote the Paxos code. 

We ran in the network,  
but didn’t get consensus.

�57

There is a bug in our implementation.



Verification is So Tempting…

To the extent networks are verified, 
the focus is on forwarding  
(e.g., no path loops) 

If the network is going to take on 
more work, how can we be sure 
that is correct? 

P4 is so tempting to verify:  
no loops, no pointers, etc.
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Verification Problem
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Data Plane

Control Plane

“If ip.dst is 10.0.0.1,   
forward out port 1”

P4

Rules
The specific behavior of a P4 

program depends on the 
control plane 

We only have  
half the program! 



Hoare Logic
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c { Q }{ P }

If P holds and c executes, then Q holds. 

Axioms capture relational properties: what is true  
before and after a command executes.

Standard approach to verification 

Use automated theorem-prover to check if there is an initial 
state that leads to a violation 

Generate a counter example via weakest pre-condition



{ P + “control plane assumptions”}

P4 + Hoare Logic

�61

c { Q }
If P plus some assumed knowledge holds  

and c executes, then Q holds. 

Axioms capture relational properties: what is true  
before and after a command executes.

Allow programmers to express symbolic constraints on the 
control plane in terms of predicates on data plane state 

Combined, the control plane and data plane behave as expected



Verification Challenges
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Challenge Solution

P4 does not have a  
formal semantics

We had to define one  
via translation

What should the  
annotations look like?

Leveraged our domain-specific 
knowledge to define language

How do we make the 
solver scale?

Standing on the shoulders  
of giants, e.g., passivization  

[Flanagan and Saxe, POPL 2001]



P4v : Basic Approach
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Translate P4 
to logical 
formulas Define a  

program logic 
for P4 

Annotate to 
check for 
properties

Reduce to  
SMT problem

action forward(p) { … }
table T {
  reads {
    tcp.dstPort;
    eth.type;}
  actions { 
    drop; 
    forward; } }

Desired Property: 

"If the tcp.dstPort is 22,  
then drop the packet.”
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Translate P4 
to logical 
formulas Define a  

program logic 
for P4 

Annotate to 
check for 
properties

Reduce to  
SMT problem

action forward(p) { … }
table T {
  reads {
    tcp.dstPort;
    eth.type;}
  actions { 
    drop; 
    forward; } }

Desired Property: 

"If the round number of 
arriving packet is greater 
than the stored round number,  
then drop the packet.”



CCR Paper Bug 
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@pragma assume valid(paxos) implies local.round <= paxos.rnd 
 apply(rount_table) {
     if (local.round <= paxos.rnd) { apply(acceptor_table) }
 }
@pragma assert valid(paxos)  implies local.set_drop == 0 

Action failed to set the “drop flag” when the arriving round 
number is greater than the stored round number.



Evaluation

Ran our verifier on a diverse collection of 13 P4 programs 

Conventional forwarding: Router, NAT, Switch 

Source routing: ToR, VPC 

In-network processing: Paxos, LinearRoad 

Most finished in 10s of ms; switch.p4 finished in 15 seconds.
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Only system to verify switch.p4



Outlook
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Summarizing

System artifact that can achieve orders-of-magnitude 
improvements in performance  

Identified techniques for programming within  
fundamental hardware constraints 

Novel re-interpretation of the Paxos algorithm  

Hopefully add clarity through a different perspective 

Mechanized proof of correctness of the implementation
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A Few Lessons Learned

What are good candidate applications for network acceleration? 

“Squint a little bit, and they look like routing” 

Applications with transient state, rather than persistent 

Services that are I/O bound 

Network acceleration helps latency, but throughput is the big win
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What’s Next?

Very exciting time for networking and systems 

Network programmability provides an amazing opportunity  
to revisit the entire stack 

Redesign systems using an integrated approach, combining 
databases, networking, distributed systems, and PL
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http://www.inf.usi.ch/faculty/
soule/

http://frenetic-lang.org/merlin
http://frenetic-lang.org/merlin

