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Why Do We Need Concurrency Control?
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Pessimistic Concurrency Control
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Optimistic Concurrency Control
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Pessimistic vs Optimistic Concurrency Control

This paper d
tralized

Limitations of Concurrer
Processing

PETER FRANASZEK and JOHN T,ROE

concurrency contro
uling, and (3) opti

and (3) 1 + ((1 — p)/p)In(p( (n,p) =

concu
algorithm-independeri}
developed in oggd

n— x, (1) E — 0 for standa

Pessimistic

3 we critically investigate t

Concurrency Control Performance Modeling:
Alternatives and Implications

RAKESH AGRAWAL

AT&T Bell Laboratories

MICHAEL J. CAREY and MIRON LIVNY
University of VW& i

|

A number of recent
database manag
to be contradictory.

tions. We employ
performance of
modeling assumptions. The thre
conflicts are dealt with, and the

blem under a variety of
emes in how transaction

concurrency control algorithm about transal /ns’ referenceMtrings. We show that differences i in the

IS better!

|leads to a rule of thumb on how much data cony ntlon should be permitted in a system. Throughput
can exceed this bound if a transaction is restarted whenever it encounters a conflict, provided restart
5

rency

control algomhms lhc database system +|




Pessimistic vs Optimistic Concurrency Control
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OCC: Aborts are Ex
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OCC With Infinite Resources

e \What if we had infinite CPUs to abort transactions?
e Hardware can process aborts virtually instantly

e This hardware is already in the network



Network OCC (NOCC)

e Offload transaction verification to the switch
e High parallelism for high-contention workloads

e Reduces server load for workloads (like TPC-C)



System Model
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The NOCC Approach

e Update cache with write values

e Update cache with ABORT values

e Early abort invalid transaction
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NOCC Example
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NOCC Correctness

e Strong consistency:

o Reads are not handled by switch — no stale reads
e Liveness:

o Transactions eventually commit
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Implementation
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Switch Implementation: Key Challenges

e Storing cached values on the switch

e Processing packet headers containing transactions
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Processing Transactions

e Each transaction contains one or more operations:
o read(), cmp(), write()

e The P4 program iterates over the operations:
o Ifinvalid cmp (), abort transaction
o Ifwrite (), update cache

e P4 doesn’t have iteration primitives

o So we recirculate the packet
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Switch Cache

e We use SRAM registers
e Values (128 bits) are too large for a single register

o So we shard the value across multiple registers

Reg1 Reg2 Reg3 Reg4

val[0...31] val[32...63] val[64...95] val[95...128]




Evaluation on Hardware
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Experimental Setup

e Clients and store run on seperate servers

e (Connected via a Barefoot Tofino switch running NOCC

e Evaluated with microbenchmarks and TPC-C
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NOCC has Higher Throughput
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NOCC Reduces End-to-End Latency
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NOCC Reduces Aborts from the Store
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NOCC Reduces Server Load for TPC-C
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Minimal Throughput Overhead for TPC-C
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In Conclusion, NOCC...

e Offloads transaction verification logic to the network
e Provides high throughput under high contention
e Reduces CPU load on the server

https://qgithub.com/usi-systems/nocc
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https://github.com/usi-systems/nocc
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Packet Header Format

The nocc hdr is followed
by a nocc_ op header for

header type nocc_hdr t ({
fields {
bit<l> msg type; // REQ/RES
bit<l> from switch;
bit<32> txn id;
bit<8> frag seq;
bit<8> frag cnt;
bit<8> status;
bit<8> op cnt;

) \\/

each operation

header type nocc op t {
fields {
bit<8> op type;
bit<32> key;
bit<1024> wvalue;

Number of following
\Lnocc_op headers
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