
Infinite Resources for
Optimistic Concurrency

Control with NOCC
Theo Jepsen, Leandro Pacheco de Sousa,

Masoud Moshref, Fernando Pedone, Robert Soulé
Università della Svizzera italiana (USI) and Barefoot Networks

Why Do We Need Concurrency Control?

Account Balance

$50

Deposit
$100

Deposit
$100

50 + 100 50 + 100

Account Balance

$150

Should be
$250

2

Pessimistic Concurrency Control

Account Balance

$50

Deposit
$100

Deposit
$100

Account Balance

$150

Account Balance

$250

50 + 100

150 + 100

Locks hurt
concurrency

3

Optimistic Concurrency Control

Account Balance

$50

Account Balance

$150

Account Balance

$250

50 + 100
 (if balance is still $50)

Read balance Read balance

50 + 100
 (if balance is still $50)

Abort!
150 + 100

 (if balance is still $150)

Retry
4

$50 $50

Pessimistic
is better!

OCC is
better!

Pessimistic vs Optimistic Concurrency Control

OCC is
better!

It depends...

5

Pessimistic vs Optimistic Concurrency Control

Pessimistic Optimistic

Low contention

High contention

6

Aborts reduce
throughput

OCC: Aborts are Expensive

7

Ideal

OCC

more clients→contention→more aborts→lower tput

OCC With Infinite Resources

● What if we had infinite CPUs to abort transactions?

● Hardware can process aborts virtually instantly

● This hardware is already in the network

8

Network OCC (NOCC)

● Offload transaction verification to the switch

● High parallelism for high-contention workloads

● Reduces server load for workloads (like TPC-C)

9

System Model

Balance

$50

R() R()

CMP(), W() CMP(), W()

10

cache cache

● Update cache with write values
● Update cache with ABORT values
● Early abort invalid transactions

cache

The NOCC Approach

Update

ABORT(X)

CMP(X)
Abort

W(X)

Update

11

R() R()

CMP(50), W(150)

ABORT(50)

NOCC Example

Balance

$50

12

Balance

$150

CMP(50), W(150)

150

50 50

NOCC Correctness

● Strong consistency:
○ Reads are not handled by switch – no stale reads

● Liveness:
○ Transactions eventually commit

13

Implementation

14

Switch Implementation: Key Challenges

● Storing cached values on the switch

● Processing packet headers containing transactions

15

Processing Transactions

● Each transaction contains one or more operations:

○ read(), cmp(), write()

● The P4 program iterates over the operations:

○ If invalid cmp(), abort transaction

○ If write(), update cache

● P4 doesn’t have iteration primitives

○ So we recirculate the packet 16

Switch Cache

● We use SRAM registers

● Values (128 bits) are too large for a single register

○ So we shard the value across multiple registers

Reg1 Reg2 Reg3 Reg4

val[0...31] val[32...63] val[64...95] val[95...128]

17

Evaluation on Hardware

18

Experimental Setup

● Clients and store run on seperate servers

● Connected via a Barefoot Tofino switch running NOCC

● Evaluated with microbenchmarks and TPC-C

Client
19

NOCC has Higher Throughput

20

NOCC Reduces End-to-End Latency

21

NOCC Reduces Aborts from the Store

Commits all transactions

22

NOCC Reduces Server Load for TPC-C

23

Minimal Throughput Overhead for TPC-C

24

In Conclusion, NOCC...

● Offloads transaction verification logic to the network
● Provides high throughput under high contention
● Reduces CPU load on the server

https://github.com/usi-systems/nocc
25

https://github.com/usi-systems/nocc

Extra Slides

26

Packet Header Format

header_type nocc_hdr_t {
 fields {
 bit<1> msg_type; // REQ/RES
 bit<1> from_switch;
 bit<32> txn_id;
 bit<8> frag_seq;
 bit<8> frag_cnt;
 bit<8> status;
 bit<8> op_cnt;
 }
}

header_type nocc_op_t {
 fields {
 bit<8> op_type;
 bit<32> key;
 bit<1024> value;
 }
}

The nocc_hdr is followed
by a nocc_op header for
each operation

Number of following
nocc_op headers

27

