Infinite Resources for

Optimistic Concurrency
Control with NOCC

Theo Jepsen, Leandro Pacheco de Sousa,
Masoud Moshref, Fernando Pedone, Robert Soulé

Universita della Svizzera italiana (USI) and Barefoot Networks

Why Do We Need Concurrency Control?

Deposit Deposit
$100 $100

50 + 100 50 + 100

Account Balance

$50

L

Account Balance

Should be
$250

$150

Pessimistic Concurrency Control

Deposit N Deposit
$100 n $100
Account Balance =
=
50 + 100 $50
e a
Account Balance 150 + 100

Locks hurt 5150
concurrency

Account Balance

$250

Optimistic Concurrency Control

OO Read balance Read balance

o 47
Account Balance

> -—
50 + 100 $50 50 + 100
(if balance is still $50) iyl (if balance is still $50)
Account Balance
-«
$150 150 + 100
@ (if balance is still $150)

Account Balance

$250

Pessimistic vs Optimistic Concurrency Control

This paper d
tralized

Limitations of Concurrer
Processing

PETER FRANASZEK and JOHN T,ROE

concurrency contro
uling, and (3) opti

and (3) 1 + ((1 — p)/p)In(p((n,p) =

concu
algorithm-independeri}
developed in oggd

n— x, (1) E — 0 for standa

Pessimistic

3 we critically investigate t

Concurrency Control Performance Modeling:
Alternatives and Implications

RAKESH AGRAWAL

AT&T Bell Laboratories

MICHAEL J. CAREY and MIRON LIVNY
University of VW& i

|

A number of recent
database manag
to be contradictory.

tions. We employ
performance of
modeling assumptions. The thre
conflicts are dealt with, and the

blem under a variety of
emes in how transaction

concurrency control algorithm about transal /ns’ referenceMtrings. We show that differences i in the

IS better!

|leads to a rule of thumb on how much data cony ntlon should be permitted in a system. Throughput
can exceed this bound if a transaction is restarted whenever it encounters a conflict, provided restart
5

rency

control algomhms lhc database system +|

Pessimistic vs Optimistic Concurrency Control

Pessimistic Optimistic

Low contention ‘ @
High contention @ ‘

Aborts reduce
throughput

OCC: Aborts are Ex

¥ 5000
=

X 4000

Q

< 2000}
(@)]
3 1000!

Thr

0

pensive

{ldeal

yOCC
5 1015 20 25 30 35 40
Number of Clients

[more clients—contention—more aborts—Ilower tput]

7

OCC With Infinite Resources

e \What if we had infinite CPUs to abort transactions?
e Hardware can process aborts virtually instantly

e This hardware is already in the network

Network OCC (NOCC)

e Offload transaction verification to the switch
e High parallelism for high-contention workloads

e Reduces server load for workloads (like TPC-C)

System Model

R()

Balance

- W 10

The NOCC Approach

e Update cache with write values

e Update cache with ABORT values

e Early abort invalid transaction
Update

W (X) Fa

— cache Q_

CMP (X) —

ABORT (X)

11

NOCC Example

ABORT (50)

Balance

$150

\ ‘ / 12

NOCC Correctness

e Strong consistency:

o Reads are not handled by switch — no stale reads
e Liveness:

o Transactions eventually commit

13

Implementation

14

Switch Implementation: Key Challenges

e Storing cached values on the switch

e Processing packet headers containing transactions

15

Processing Transactions

e Each transaction contains one or more operations:
o read(), cmp(), write()

e The P4 program iterates over the operations:
o Ifinvalid cmp (), abort transaction
o Ifwrite (), update cache

e P4 doesn’t have iteration primitives

o So we recirculate the packet

16

Switch Cache

e We use SRAM registers
e Values (128 bits) are too large for a single register

o So we shard the value across multiple registers

Reg1 Reg2 Reg3 Reg4

val[0...31] val[32...63] val[64...95] val[95...128]

Evaluation on Hardware

18

Experimental Setup

e Clients and store run on seperate servers

e (Connected via a Barefoot Tofino switch running NOCC

e Evaluated with microbenchmarks and TPC-C

Client

m N~~~

sEREEEER

19

NOCC has Higher Throughput

p—
0
N~

X 4000}

ol

pu

<
(o)

Throu

5000

3000-§
2000-§ W
1000, ™=

5 10 15 20 25 30 35 40
Number of Clients

20

NOCC Reduces End-to-End Latency

%70
Ee6o0
§50-
340
530
20

5 10 15 20 25 30 35 40
Number of Clients

21

NOCC Reduces Aborts from the Store

o N

U

W

N

Commits all transactions }

[

Aborts per TXN (store)
Y

=)

5 10 15 20 25 30 35 40
Number of Clients
22

NOCC Reduces Server Load for TPC-C

(=)

1

=

N W

=

'm—a OCC |
o—e NOCC

4 6 8 10 12 14 16
Number of Clients

NQ

CPU Usage at Store (%)

Minimal Throughput Overhead for TPC-C

N
o
o

=
8
o

=
o
=

Throughput (TXN/s)
Ul
=

>~ 6 8 10 12 14 16
Number of Clients

24

In Conclusion, NOCC...

e Offloads transaction verification logic to the network
e Provides high throughput under high contention
e Reduces CPU load on the server

https://qgithub.com/usi-systems/nocc

25

https://github.com/usi-systems/nocc

Extra Slides

Packet Header Format

The nocc hdr is followed
by a nocc_ op header for

header type nocc_hdr t ({
fields {
bit<l> msg type; // REQ/RES
bit<l> from switch;
bit<32> txn id;
bit<8> frag seq;
bit<8> frag cnt;
bit<8> status;
bit<8> op cnt;

) \\/

each operation

header type nocc op t {
fields {
bit<8> op type;
bit<32> key;
bit<1024> wvalue;

Number of following
\Lnocc_op headers

27

