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Why Do We Need Concurrency Control?
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Pessimistic Concurrency Control
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Optimistic Concurrency Control
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Pessimistic 
is better!

OCC is 
better!

Pessimistic vs Optimistic Concurrency Control

OCC is 
better!

It depends...
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Pessimistic vs Optimistic Concurrency Control

Pessimistic Optimistic

Low contention

High contention
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Aborts reduce 
throughput



OCC: Aborts are Expensive
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Ideal

OCC

more clients→contention→more aborts→lower tput



OCC With Infinite Resources

● What if we had infinite CPUs to abort transactions?

● Hardware can process aborts virtually instantly

● This hardware is already in the network
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Network OCC (NOCC)

● Offload transaction verification to the switch

● High parallelism for high-contention workloads

● Reduces server load for workloads (like TPC-C) 
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System Model
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● Update cache with write values
● Update cache with ABORT values
● Early abort invalid transactions

cache

The NOCC Approach
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R() R()

CMP(50), W(150)

ABORT(50)

NOCC Example
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NOCC Correctness

● Strong consistency:
○ Reads are not handled by switch – no stale reads

● Liveness:
○  Transactions eventually commit
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Implementation
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Switch Implementation: Key Challenges

● Storing cached values on the switch

● Processing packet headers containing transactions
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Processing Transactions 

● Each transaction contains one or more operations:

○ read(), cmp(), write()

● The P4 program iterates over the operations:

○ If invalid cmp(), abort transaction

○ If write(), update cache 

● P4 doesn’t have iteration primitives

○ So we recirculate the packet 16



Switch Cache

● We use SRAM registers

● Values (128 bits) are too large for a single register

○ So we shard the value across multiple registers

Reg1 Reg2 Reg3 Reg4

val[0...31] val[32...63] val[64...95] val[95...128]
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Evaluation on Hardware
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Experimental Setup

● Clients and store run on seperate servers

● Connected via a Barefoot Tofino switch running NOCC

● Evaluated with microbenchmarks and TPC-C

Client
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NOCC has Higher Throughput 
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NOCC Reduces End-to-End Latency
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NOCC Reduces Aborts from the Store

Commits all transactions
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NOCC Reduces Server Load for TPC-C
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Minimal Throughput Overhead for TPC-C
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In Conclusion, NOCC...

● Offloads transaction verification logic to the network
● Provides high throughput under high contention 
● Reduces CPU load on the server

https://github.com/usi-systems/nocc
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https://github.com/usi-systems/nocc


Extra Slides
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Packet Header Format

header_type nocc_hdr_t {
  fields {
    bit<1> msg_type; // REQ/RES
    bit<1> from_switch;
    bit<32> txn_id;
    bit<8> frag_seq;
    bit<8> frag_cnt;
    bit<8> status;
    bit<8> op_cnt;
  }
}

header_type nocc_op_t {
  fields {
    bit<8> op_type;
    bit<32> key;
    bit<1024> value;
  }
}

The nocc_hdr is followed 
by a nocc_op header for 
each operation

Number of following 
nocc_op headers
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