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Motivation – In-Network Complex Event Processing
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Status quo of latency-critical Complex Event Processing (CEP):
• Operators implemented off-path in software (middlebox model)
• Inherent distribution of sources/sinks; overlay graph of operators

ex-situ processing additional latency
in software limited throughput!
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Motivation – In-Network Complex Event Processing

In-Network Complex Event Processing:
• Implement CEP within reconfigurable data plane hardware
• .. using a uniform language for Data Plane Programming

Fire!
Extinguisher

system

Smoke
detector

Temperature
sensor

in-situ processing
on reconfigurable
hardware

no additional RTTs (latency),
high throughput

!
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Contributions

• Concepts for in-network implementation of Complex Event 
Processing (P4CEP)
◦ Rule specification language
◦ Compiler from rule specification to P4

• Proof-of-concept implementation of P4CEP compiler
◦ For programmable NICs (Netronome NFP) and bmv2
◦ Publicly available at http://goo.gl/MEdPvv

• Discuss experience and limitations of Data Plane Programming for 
stateful packet processing

• Evaluation on a programmable NIC (NFP)

• Roadmap towards a distributed in-network CEP
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Complex Event Processing

• CEP operator: processes streams of incoming events ( )
to detect complex events ( )

• Event specification language
◦ Specifies conditions (expressions) for complex events

▪ : predicates on values (numerical and logical operators)

▪ : logical operators for combination of input streams (AND, OR, ...)

◦ Example: temperature > 50  AND  smoke_detected ⇒ Fire!

...   20°C   18°C   30°C   35°C   42°C   55°C 49°C   63°C 65°C_ :

...   false false false false true true true true true_ :

!
!

!
!
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Complex Event Processing

: avg/min/max

size

...

slide

: count

...   20°C   18°C   30°C   35°C   42°C   55°C 49°C   63°C 65°C_ :

...   false false false false true true true true true_ :

• Conditions on history of events
◦ Infinite input sequence is split into windows
◦ Window operators: aggregation functions ( ) over a window

• Requirements on processing
◦ Memory for storing (limited) event history  stateful processing
◦ Processing logic for evaluation of expressions and window operators
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P4CEP – System Model
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P4CEP – Pipeline Processing

• Classification of ingress packets or events
◦ Events are encoded in packet headers, leveraging P4’s flexible parser

• Co-NF processing: forwarding, other non-CEP network functions
• Sequential CEP processing (for each complex event to detect)

1. Window operations (persisting value, window evaluation)
2. State machine execution (pattern detection)

packets,
basic events,

complex events
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P4CEP – Compile-time Workflow
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Rule Specification Language

window sample_wnd {
size 4
value ipv4.totalLen

}
complex_event sample_evt {
value sum(ipv4.totalLen)
strategy skip-till-next-match
pattern ([ipv4.totalLen > 500] && [tcp.dstPort == 80]) ;

([sum(sample_wnd) > 6000] || [ipv4.protocol == 17])
}

CEP 
Design 
Config

• Sole input to P4CEP compiler
• Consists of

◦ Definition of windows
◦ Definition of complex events to detect

• Example:



Universität Stuttgart

IPVS

Research Group

Distributed Systems 11

Window Operators

• Supported aggregation functions ( )
◦ max, min, sum, count
◦ average (future work)

• Implementation
◦ Ring-buffer (event values) and index-pointer stored in P4 registers

◦ Register access protected by confinement in critical section
▪ Preventing inconsistency effects (e.g., lost updates)
▪ NFP: pre-processor pragma or C mutex library
▪ P416: atomic control flow block

◦ Evaluating aggregation functions 
▪ Un-rolling the iteration over the window
▪ Transient metadata fields storing aggregate value, index variable, value

Definition:
window sample_wnd {
size 4
value ipv4.totalLen }

CEP 
Design 
Config

“Packet Transactions ...” 
Sivaraman et al., 
SIGCOMM‘16
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Complex Event Definition

• Elements
◦ return value  static expression, field reference, window aggregate
◦ transition strategy {skip-till-next-match, strict}
◦ pattern: P4 expression (simple or compound predicate)

• Implementation
◦ Deterministic Finite State Machine

Definition:
complex_event sample_evt {
value sum(ipv4.totalLen)
strategy skip-till-next-match
pattern ... }

CEP 
Design 
Config
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Pattern Detection Engine – FSM Representation
CEP 

Design 
Config

• Pattern definition
◦ Pattern of basic events (input symbol x ∈ Σ)
◦ Predicates on field references, window aggregates
◦ Composition of predicates using logical operators seq., conj., disj.

Σ, , , ,

pattern ([ipv4.totalLen > 500] && [tcp.dstPort == 80]) ;
([sum(sample_wnd) > 6000] || [ipv4.protocol == 17])
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Pattern Detection Engine –Transition Table Entries

Keys Values
State Match (predicate ID) Next State Accept. State

0 totalLen > 500 1 false
0 dstPort == 80 2 false
1 dstPort == 80 3 false
2 totalLen > 500 3 false
3 sum > 6000 4 true
3 protocol == 17 4 true

pattern ([ipv4.totalLen > 500] && [tcp.dstPort == 80]) ;
([sum(sample_wnd) > 6000] || [ipv4.protocol == 17])

P4CEP
Runtime 
Config

• FSM transition
◦ Metadata fields storing current state ( ∈ ), matched predicate ( → )
◦ Lookup in transition table , persisting new state / handle complex event
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Encountered Limitations

• Target-dependent
◦ Synchronization of state memory access
 additional latency

• Language-dependent (P4)
◦ Registers cannot directly be referenced by arithmetic operators or as 

table keys
 indirection over transient meta data field

◦ No floating point arithmetic, no division operator
 fixed-point arithmetic

◦ No loop-construct (not even bounded loops)
 requires manual loop-unrolling
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Evaluation – Methodology

• 1 CEP pattern of 2 basic events, sum over window of varying size 
• Acquired metrics: target’s processing latency and throughput

Tproc
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CEP sink
HW TIMESTAMP HW TIMESTAMP
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triggered
complex event
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2x 10GbE NIC 
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Evaluation – Results

• NFP-C: ▪ 9.8	μ 29.5	μ ▪ 56% 16%

▪ scales linearly with window size ( 1000

• bmv2: ▪ 512	μ 10,000	μ ▪ 0.05%
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Conclusion

• Introduced to Complex Event Processing and requirements on 
processing

• Presented our in-network implementation of Complex Event 
Processing (P4CEP)

• Discussed encountered limitations of Data Plane Programming for 
stateful packet processing

• Shown P4CEP’s practicability on a programmable NIC target
◦ Microsecond / million messages per second scales
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Future Work – Roadmap to Distributed In-Network CEP

• Placement of operators
◦ According to complexity of processing

▪ End-systems: smart-NIC HW, SW (kernel), SW (user space)

◦ Disaggregation of event detection (replication / partitioning of events)

• Pre-processing (content-based in-network filtering of events)

Fire!

Extinguisher
system

Smoke
detector

Temperature
sensor !

!

!
!

temperature > 50X filter out any
smoke event
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Contact &
further information:

Thanks for your attention

Any
Questions?

https://goo.gl/tYWSgW
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BACKUP SLIDES
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Related Work

• In-network Computing (Use Cases)
◦ Dang et al., NetPaxos: Consensus at Network Speed, SOSR ’15
◦ Liu et al., IncBricks: Toward In-Network Computation with an In-Network Cache, 

ASPLOS ’17
◦ Sapio et al., In-Network Computation is a Dumb Idea Whose Time Has Come, 

HotNets-XVI, 2017

• High-level Network Programming Languages (Network-centric)
◦ Arashloo et al., SNAP: Stateful Network-Wide Abstractions for Packet 

Processing, SIGCOMM’16
◦ McClurg et al., Event-driven Network Programming (“Stateful NetKat”), PLDI ’16

• „In-network“ State Machine Implementation (OpenFlow-based)
◦ Bianchi et al., OpenState: Programming Platform-independent Stateful Openflow

Applications Inside the Switch, SIGCOMM Comput. Commun. Rev. 44, 2, 2014
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In-Network Computing – Background

• Data Plane Programming
◦ Hardware- and protocol-agnostic language (P4)
◦ .. defining forwarding behavior of reconfigurable data plane hardware
◦ Key elements (programmable)

▪ Parser / deparser  semantics of packet header
▪ Match-action engine  semantics of packet processing

◦ P4 was not designed for general-purpose computing

• In-Network Computing
◦ Offloading of application functionality from end-systems to data plane

▪ Leverage performance of specialized forwarding hardware

◦ Typical targets: programmable NICs, FPGAs, programmable data-center 
switches (based on ASICs or FPGAs)

P4,  Bosshart et 
al., SIGCOMM 
CCR 44, 3
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In-Network Computing –
Challenges for Stateful Packet Processing

• Target-dependent limitations
◦ Consistency of state data

▪ Synchronization of access ▪ Atomic operations

◦ Line-rate enforcing  limited processing (pipeline steps)
◦ Limited memory for control logic and state (SRAM, TCAM)

• Language-dependent limitations (P4)
◦ No floats, no loops, missing arithmetic operators, etc.
 P4 not designed for general-purpose computing (not Turing-complete)

• Increasing processing capabilities (extensibility)
◦ Increase expressiveness by leveraging „extern functions“ mechanism
◦ Interface: target-dependent (P414) or standardized (P416 primitive)

“Packet Transactions ...” 
Sivaraman et al., 
SIGCOMM‘16
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Event Encoding & Packet Classification

• Events are encoded in packet headers
◦ Leverage P4‘s flexible parser / deparser

◦ Basic events  P4 parser
▪ Fields: event type and values
▪ Pattern matching based on predicates over these header fields

◦ Returned complex events  P4 deparser

• Classification of ingress packets to discriminate..
◦ Basic events  CEP Engine
◦ Non-CEP traffic, complex events  Co-NF

Event Header Def.

P4 Code
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Evaluation – Results

• NFP-C: ▪ 9.8	μ 29.5	μ ▪ 56% 16%

▪ scales linearly with window size ( 1000

• bmv2: ▪ 512	μ 10,000	μ ▪ 0.05%

(n)
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Evaluation – Additional Results

• Baselines performance (parsing L2-L5, smallest-packet size)
◦ NFC: : 6.8 µs; : line-rate

◦ bmv2: : 475 µs; : 0.08% (12 Kpps)

• Scalability
◦ Number of expressions on NFC ( 20)  constant and 

◦ Predicate complexity ( 8) on NFC    constant and 
◦ Number of complex events to detect on NFC/-C: 4
◦ Number of pattern interleavings on NFC/-C: 5

• Apache Flink performance
◦ : 232 µs

◦ : ~750 Kpps (1 node, CPU-dependent, external measurement)
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P4CEP Compiler – Code Generation




