
Universität Stuttgart
Institute of Parallel and
Distributed Systems (IPVS)

Universitätsstraße 38
D-70569 Stuttgart

P4CEP: Towards In-Network
Complex Event Processing

Thomas Kohler, Ruben Mayer, Frank Dürr, Marius Maaß,
Sukanya Bhowmik, and Kurt Rothermel

August 20th, 2018

ACM SIGCOMM 2018
Workshop on In-Network Computing

Universität Stuttgart

IPVS

Research Group

Distributed Systems 2

Motivation – In-Network Complex Event Processing

Fire!
Extinguisher

system

Smoke
detector

Temperature
sensor

CEP
operator

Fire!

Status quo of latency-critical Complex Event Processing (CEP):
• Operators implemented off-path in software (middlebox model)
• Inherent distribution of sources/sinks; overlay graph of operators

ex-situ processing additional latency
in software limited throughput!

Universität Stuttgart

IPVS

Research Group

Distributed Systems 3

Motivation – In-Network Complex Event Processing

In-Network Complex Event Processing:
• Implement CEP within reconfigurable data plane hardware
• .. using a uniform language for Data Plane Programming

Fire!
Extinguisher

system

Smoke
detector

Temperature
sensor

in-situ processing
on reconfigurable
hardware

no additional RTTs (latency),
high throughput

!

Universität Stuttgart

IPVS

Research Group

Distributed Systems 4

Contributions

• Concepts for in-network implementation of Complex Event
Processing (P4CEP)
◦ Rule specification language
◦ Compiler from rule specification to P4

• Proof-of-concept implementation of P4CEP compiler
◦ For programmable NICs (Netronome NFP) and bmv2
◦ Publicly available at http://goo.gl/MEdPvv

• Discuss experience and limitations of Data Plane Programming for
stateful packet processing

• Evaluation on a programmable NIC (NFP)

• Roadmap towards a distributed in-network CEP

Universität Stuttgart

IPVS

Research Group

Distributed Systems 5

Complex Event Processing

• CEP operator: processes streams of incoming events ()
to detect complex events ()

• Event specification language
◦ Specifies conditions (expressions) for complex events

▪ : predicates on values (numerical and logical operators)

▪ : logical operators for combination of input streams (AND, OR, ...)

◦ Example: temperature > 50 AND smoke_detected ⇒ Fire!

... 20°C 18°C 30°C 35°C 42°C 55°C 49°C 63°C 65°C_ :

... false false false false true true true true true_ :

!
!

!
!

Universität Stuttgart

IPVS

Research Group

Distributed Systems 6

Complex Event Processing

: avg/min/max

size

...

slide

: count

... 20°C 18°C 30°C 35°C 42°C 55°C 49°C 63°C 65°C_ :

... false false false false true true true true true_ :

• Conditions on history of events
◦ Infinite input sequence is split into windows
◦ Window operators: aggregation functions () over a window

• Requirements on processing
◦ Memory for storing (limited) event history stateful processing
◦ Processing logic for evaluation of expressions and window operators

Universität Stuttgart

IPVS

Research Group

Distributed Systems 7

P4CEP – System Model
D

a
t

a

P
l

a
n

e
C

on
tr

ol
Pl

an
e

CEP end-system
(sink)

CEP end-system
(source)

end-system end-system

P4 Table
Entries

State
transitions

up-
date

P4CEP Runtime
Component

monitor

P4CEP-
TARGET

P4CEP-
TARGET

Universität Stuttgart

IPVS

Research Group

Distributed Systems 8

P4CEP – Pipeline Processing

• Classification of ingress packets or events
◦ Events are encoded in packet headers, leveraging P4’s flexible parser

• Co-NF processing: forwarding, other non-CEP network functions
• Sequential CEP processing (for each complex event to detect)

1. Window operations (persisting value, window evaluation)
2. State machine execution (pattern detection)

packets,
basic events,

complex events

WINDOW-OPERATORS

PATTERN DETECTION
ENGINE (STATE MACHINE)C

E
P

C
LA

SS
IF

IE
R

resubmission

P4CEP-TARGET

packets,
basic events,

complex events

CO-NF

Universität Stuttgart

IPVS

Research Group

Distributed Systems 9

P4CEP – Compile-time Workflow

R
U

N

T

I

M

E

P4 Comp.
(front-end)

P4 Comp.
(back-end)

P4CEP
Compiler

NFP

P4FPGA
Toolchain

NFP
Toolchain

Software Switch
bmv2

NetFPGA

P4 Code
P4 Run-

time
Config

P4CEP
Runtime
Config

CEP
Design
Config

CO-NETWORK FUNCTIONS

P4CEP

IR

TARGET-SPECIFIC

C-
Sand

box

C-files
HDL

Fct.-
Block

extern intf.

extern intf.

Event Header Def.
Rules/Patterns

P4 Code

include

Universität Stuttgart

IPVS

Research Group

Distributed Systems 10

Rule Specification Language

window sample_wnd {
size 4
value ipv4.totalLen

}
complex_event sample_evt {
value sum(ipv4.totalLen)
strategy skip-till-next-match
pattern ([ipv4.totalLen > 500] && [tcp.dstPort == 80]) ;

([sum(sample_wnd) > 6000] || [ipv4.protocol == 17])
}

CEP
Design
Config

• Sole input to P4CEP compiler
• Consists of

◦ Definition of windows
◦ Definition of complex events to detect

• Example:

Universität Stuttgart

IPVS

Research Group

Distributed Systems 11

Window Operators

• Supported aggregation functions ()
◦ max, min, sum, count
◦ average (future work)

• Implementation
◦ Ring-buffer (event values) and index-pointer stored in P4 registers

◦ Register access protected by confinement in critical section
▪ Preventing inconsistency effects (e.g., lost updates)
▪ NFP: pre-processor pragma or C mutex library
▪ P416: atomic control flow block

◦ Evaluating aggregation functions
▪ Un-rolling the iteration over the window
▪ Transient metadata fields storing aggregate value, index variable, value

Definition:
window sample_wnd {
size 4
value ipv4.totalLen }

CEP
Design
Config

“Packet Transactions ...”
Sivaraman et al.,
SIGCOMM‘16

Universität Stuttgart

IPVS

Research Group

Distributed Systems 12

Complex Event Definition

• Elements
◦ return value static expression, field reference, window aggregate
◦ transition strategy {skip-till-next-match, strict}
◦ pattern: P4 expression (simple or compound predicate)

• Implementation
◦ Deterministic Finite State Machine

Definition:
complex_event sample_evt {
value sum(ipv4.totalLen)
strategy skip-till-next-match
pattern ... }

CEP
Design
Config

Universität Stuttgart

IPVS

Research Group

Distributed Systems 13

Pattern Detection Engine – FSM Representation
CEP

Design
Config

• Pattern definition
◦ Pattern of basic events (input symbol x ∈ Σ)
◦ Predicates on field references, window aggregates
◦ Composition of predicates using logical operators seq., conj., disj.

Σ, , , ,

pattern ([ipv4.totalLen > 500] && [tcp.dstPort == 80]) ;
([sum(sample_wnd) > 6000] || [ipv4.protocol == 17])

Universität Stuttgart

IPVS

Research Group

Distributed Systems 14

Pattern Detection Engine –Transition Table Entries

Keys Values
State Match (predicate ID) Next State Accept. State

0 totalLen > 500 1 false
0 dstPort == 80 2 false
1 dstPort == 80 3 false
2 totalLen > 500 3 false
3 sum > 6000 4 true
3 protocol == 17 4 true

pattern ([ipv4.totalLen > 500] && [tcp.dstPort == 80]) ;
([sum(sample_wnd) > 6000] || [ipv4.protocol == 17])

P4CEP
Runtime
Config

• FSM transition
◦ Metadata fields storing current state (∈), matched predicate (→)
◦ Lookup in transition table , persisting new state / handle complex event

Universität Stuttgart

IPVS

Research Group

Distributed Systems 15

Encountered Limitations

• Target-dependent
◦ Synchronization of state memory access
 additional latency

• Language-dependent (P4)
◦ Registers cannot directly be referenced by arithmetic operators or as

table keys
 indirection over transient meta data field

◦ No floating point arithmetic, no division operator
 fixed-point arithmetic

◦ No loop-construct (not even bounded loops)
 requires manual loop-unrolling

Universität Stuttgart

IPVS

Research Group

Distributed Systems 16

Evaluation – Methodology

• 1 CEP pattern of 2 basic events, sum over window of varying size
• Acquired metrics: target’s processing latency and throughput

Tproc

ts,TX tr,RX

10GbE 10GbE

CO-NF
WINDOW-OPERATORS

PATTERN DETECTION
ENGINE (STATE MACHINE)C

E
P

CEP source
CEP
end-systemNetwork Namespace 1 Network Namespace 2

CEP sink
HW TIMESTAMP HW TIMESTAMP

triggering (2nd)
basic event

triggered
complex event

Netronome Agilio
2x 10GbE NIC
(NFP, NFP-C)

Universität Stuttgart

IPVS

Research Group

Distributed Systems 17

Evaluation – Results

• NFP-C: ▪ 9.8	μ 29.5	μ ▪ 56% 16%

▪ scales linearly with window size (1000

• bmv2: ▪ 512	μ 10,000	μ ▪ 0.05%

Universität Stuttgart

IPVS

Research Group

Distributed Systems 18

Conclusion

• Introduced to Complex Event Processing and requirements on
processing

• Presented our in-network implementation of Complex Event
Processing (P4CEP)

• Discussed encountered limitations of Data Plane Programming for
stateful packet processing

• Shown P4CEP’s practicability on a programmable NIC target
◦ Microsecond / million messages per second scales

Universität Stuttgart

IPVS

Research Group

Distributed Systems 19

Future Work – Roadmap to Distributed In-Network CEP

• Placement of operators
◦ According to complexity of processing

▪ End-systems: smart-NIC HW, SW (kernel), SW (user space)

◦ Disaggregation of event detection (replication / partitioning of events)

• Pre-processing (content-based in-network filtering of events)

Fire!

Extinguisher
system

Smoke
detector

Temperature
sensor !

!

!
!

temperature > 50X filter out any
smoke event

Universität Stuttgart

IPVS

Research Group

Distributed Systems 20

Contact &
further information:

Thanks for your attention

Any
Questions?

https://goo.gl/tYWSgW

Universität Stuttgart

IPVS

Research Group

Distributed Systems 21

BACKUP SLIDES

Universität Stuttgart

IPVS

Research Group

Distributed Systems 22

Related Work

• In-network Computing (Use Cases)
◦ Dang et al., NetPaxos: Consensus at Network Speed, SOSR ’15
◦ Liu et al., IncBricks: Toward In-Network Computation with an In-Network Cache,

ASPLOS ’17
◦ Sapio et al., In-Network Computation is a Dumb Idea Whose Time Has Come,

HotNets-XVI, 2017

• High-level Network Programming Languages (Network-centric)
◦ Arashloo et al., SNAP: Stateful Network-Wide Abstractions for Packet

Processing, SIGCOMM’16
◦ McClurg et al., Event-driven Network Programming (“Stateful NetKat”), PLDI ’16

• „In-network“ State Machine Implementation (OpenFlow-based)
◦ Bianchi et al., OpenState: Programming Platform-independent Stateful Openflow

Applications Inside the Switch, SIGCOMM Comput. Commun. Rev. 44, 2, 2014

Universität Stuttgart

IPVS

Research Group

Distributed Systems 23

In-Network Computing – Background

• Data Plane Programming
◦ Hardware- and protocol-agnostic language (P4)
◦ .. defining forwarding behavior of reconfigurable data plane hardware
◦ Key elements (programmable)

▪ Parser / deparser semantics of packet header
▪ Match-action engine semantics of packet processing

◦ P4 was not designed for general-purpose computing

• In-Network Computing
◦ Offloading of application functionality from end-systems to data plane

▪ Leverage performance of specialized forwarding hardware

◦ Typical targets: programmable NICs, FPGAs, programmable data-center
switches (based on ASICs or FPGAs)

P4, Bosshart et
al., SIGCOMM
CCR 44, 3

Universität Stuttgart

IPVS

Research Group

Distributed Systems 24

In-Network Computing –
Challenges for Stateful Packet Processing

• Target-dependent limitations
◦ Consistency of state data

▪ Synchronization of access ▪ Atomic operations

◦ Line-rate enforcing limited processing (pipeline steps)
◦ Limited memory for control logic and state (SRAM, TCAM)

• Language-dependent limitations (P4)
◦ No floats, no loops, missing arithmetic operators, etc.
 P4 not designed for general-purpose computing (not Turing-complete)

• Increasing processing capabilities (extensibility)
◦ Increase expressiveness by leveraging „extern functions“ mechanism
◦ Interface: target-dependent (P414) or standardized (P416 primitive)

“Packet Transactions ...”
Sivaraman et al.,
SIGCOMM‘16

Universität Stuttgart

IPVS

Research Group

Distributed Systems 25

Event Encoding & Packet Classification

• Events are encoded in packet headers
◦ Leverage P4‘s flexible parser / deparser

◦ Basic events P4 parser
▪ Fields: event type and values
▪ Pattern matching based on predicates over these header fields

◦ Returned complex events P4 deparser

• Classification of ingress packets to discriminate..
◦ Basic events CEP Engine
◦ Non-CEP traffic, complex events Co-NF

Event Header Def.

P4 Code

Universität Stuttgart

IPVS

Research Group

Distributed Systems 26

Evaluation – Results

• NFP-C: ▪ 9.8	μ 29.5	μ ▪ 56% 16%

▪ scales linearly with window size (1000

• bmv2: ▪ 512	μ 10,000	μ ▪ 0.05%

(n)

Universität Stuttgart

IPVS

Research Group

Distributed Systems 27

Evaluation – Additional Results

• Baselines performance (parsing L2-L5, smallest-packet size)
◦ NFC: : 6.8 µs; : line-rate

◦ bmv2: : 475 µs; : 0.08% (12 Kpps)

• Scalability
◦ Number of expressions on NFC (20) constant and

◦ Predicate complexity (8) on NFC constant and
◦ Number of complex events to detect on NFC/-C: 4
◦ Number of pattern interleavings on NFC/-C: 5

• Apache Flink performance
◦ : 232 µs

◦ : ~750 Kpps (1 node, CPU-dependent, external measurement)

Universität Stuttgart

IPVS

Research Group

Distributed Systems 28

P4CEP Compiler – Code Generation

