

P4-TO-VHDL

Pavel Benáček

CESNET

20.8.2018 P4 Tutorial

SIGCOMM Budapest

Solution Overview

- Project started as my Ph.D. work
 - Czech Technical University in Prague, Faculty of Information Technology
 - CESNET (Czech Educational and Scienific NETwork)
- Ecosystem includes:
 - Compiler from P4 to VHDL
 - 2. General design of P4 ready NIC (P4NIC)
 - 3. Library for device configuration (lib4dev)
 - 4. Support of the pipeline in PI library (P4Runtime)
- We provide all parts required for rapid development
- The solution is capable to reach high-speeds

Solution Overview

¹⁾ p4lang/PI Project https://github.com/p4lang/PI

Architecture

Size and Throughput I

- 1. **IPv4 Filter** filtering of packets is based (IPv4 address), the non-IP traffic is dropped
- IPv4+IPv6 Filter extends the IPv4 Filter with support of IPv6 protocol
- Full Filter extends the IPv4+IPv6 Filter with support of tagging (VLAN and MPLS)

Project	P4 lines	Time [s]	Generated lines	Total lines
IPv4 Filter	91	1.574	6283	24791
IPv4+IPv6 Filter	129	1.818	9888	28396
Full Filter	212	1.929	13824	32332

- **Generated lines** expresses the effort of the generator
- **Total Lines** the sum of generated lines and lines of library source code (FIFO, TCAM, and so on)

 P. Benáček, Liberouter, CESNET

Size and Throughput II

■ Throughput of test line is 100Gbps

Size and Throughput III

■ Inefficiency is caused by the *Deparser* block

Size and Throughput IV

■ Slice Logic = LUTs + Registers

- Currently supports P4₁₄
 - P4-HLIR, implemented in Python
 - Version with P4C frontend is under development
- Generated VHDL code is platform independent
- Supported FPGAs
 - Xilinx Virtex 7, Virtex UltraScale+
 - Intel
- \blacksquare P4 $\xrightarrow{P4-to-VHDL}$ VHDL $\xrightarrow{Synthesis}$ bitstream
- No additional tool is needed
 - p4fpga requires Bluespec compiler

Translation Process

- Each generated pipeline has a different structure
 - Keys structure, set of actions, number of tables
- DT = DeviceTree
 - Data structure for hardware description
 - https://www.devicetree.org/

- Fast HW without comfort control == useless
- Multiplatform library in C language
 - Configuration M+A Tables with rules
 - Device control (Enable/Disable, Reset, etc.)
- No recompilation is needed for new P4 program
- All necessary data are stored in DT on a device
 - Structure of the P4 pipeline
 - Action name \rightarrow opcode
 - Table name → address space offset
 - Structure of table search key
 - Structure of the pipeline's address space
- Allows fast and easy development

■ P4NIC = NIC with P4 generated cores

- Basic infrastructure for transfers from/to SW to Ethernet/DMA
- Doesn't need to be modified because interface is sustained
- Used for fast development of P4 accelerated applications

Supported cards:

- COMBO-100G (Virtex 7, 100 Gbps)
- COMBO-100G2Q (Virtex 7, 100 Gbps)
- COMBO-200G2QL(Virtex US+, 2×100 Gbps)

- Coloured parts are generated by the compiler
- White parts stay unchanged

INT Demo

- P4 Worskhop 2017, CA, USA
- INT Sink at 100 Gbps using a single FPGA
- GUI Flowmon Collector
 - Professional tool for flow monitoring
 - Extended to display delays of switches in INT network

Open vSwitch (OVS) Acceleration

- Demonstrated on several conferences
 - P4 Workshop 2018,CA, USA
 - TNC18, Trondheim, Norway
- Partial OVS acceleration
 - Input traffic is parsed and assigned with Mark ID
 - Mark ID assignment is configured via DPDK's RTE Flow
- Accelerated version 2× higher packet rate

Service Function Chaining

- P4 Workshop 2018, CA, USA
- Realization of NFV (Network Function Virtualization)
- Implemented using the IPv6 Segment routing
- Capable to process data at 100 Gbps

IPv7 Demo

- FPL 2017, Ghent, Belgium
- Accelerated decapsulation from non-existing IP protocol
- Capable to process data at 100 Gbps

■ Demonstration of the project translation (**live**)

■ Demonstration of OVS Acceleration (**video**)

- Full P4 environment for rapid development
 - P4 compiler, configuratin layer, initial FPGA design (P4NIC), build system
- Capable to reach high-speeds (100 Gbps)
- More information about generated pipeline
 - Ph.D. Thesis: Generation of High-Speed Network Device from High-Level Description
- Future Work:
 - Remove all bottlenecks from the design
 - Full support of P4₁₆
 - Implementation of verification environment for generated RTLs

cesnet

Thank you for your attention.

www.liberouter.org