Sincronia:
Near-Optimal Network Design for Coflows

Shijin Rajakrishnan

Joint work with

Saksham Agarwal Akshay Narayan Rachit Agarwal David Shmoys Amin Vahdat

F

|

ok AR A
Tl ke =

The Flow Abstraction

-

&

Traditional Applications:

Care about performance
of individual flows

~

J

Good Match

I I I I I B 7
e T . 1
S B
SRRt — 1
sEVay-
WIKIPEDIA

€ IR

Optimized for Flow-level performance]

L el o -

s Flow Still the Right Abstraction?
ChEREEE

.

Tradltlonal Appllcatlons
Care about performance
of individual flows

J

HTTP

.

Distributed Applications:
Care about performance
for a group of flows

J

T

[Optimized for Flow-level performance

The Coflow abstraction

Collection of semantically related flows [Chowdhury & Stoica, 2012]

Coflow 1

Coflow 2 Coflow 3

Allows applications to more precisely express their performance goals

Network and Coflow Model egress ports

* Big-switch model Ingressports H

* Clairvoyant scheduler 1| oc Fabric
» Coflow details known at arrival time: X

> Source-destination for each flow
> Size of each flow
> Coflow weight

* Metric — coflow completion time: Time when all flows complete

{Goal: Minimize Average Weighted Coflow Completion Time (CCT) }

Prior Results

Impossibility Results

* NP-hard e <2x approximation hard
Runs on .

Systems/ State-of-the-art Performance Existing Work. Star\{at.lon

Theory Guarantees Conserving Avoiding
Transport

Varys
YSteMs 1 ccomM “14] ® v v
On Scheduling /
Theory Coflows x x x
[IPCO “17] (4-apx)

Practical, Near-Optimal Network Design for Coflows?

Sincronia:
Two key results

1

Guarantees 4-approximation for (weighted) average CCT

|

H-

U

Given a set of coflows and a “right” ordering,
ANY per-flow rate allocation mechanism that is
work-conserving & order-preserving
produces average CCT within 4x of optimal

N

e Per-flow rate allocation irrelevant

* Transport layer agnostic

Sincronia — Near-Optimal Network Design

Runs on
Systems/ Performance .. Work Starvation
Existing . .
Theory Guarantees Conserving Avoiding
Transport

Systems Varys
On Scheduling
VEEn; Coflows (4‘-a/px) x x x
Systems Sincronia \/ \/ \/ \/
(4-apx)

Also outperforms state-of-the-art across evaluated workloads

Sincronia Design

Ordered

j> set of

-
Set of Coflow
coflows ordering |

* Algorithm — BSSI

= Bottleneck, Select, Scale,
= SRPT-first style algorithm

coflows

o

N
Flow

)

cheduling

Priorities
on flows

e Priorities set from order

Iterate * Flows offloaded to transport layer

* No explicit per-flow rate allocation

Bottleneck-Select-Scale-Iterate (BSSI)

* Find BOTTLENECK port

= Ordered last

[T
e SELECT (weighted) largest job (TT T e

[I

(T T T T

* SCALE weights of remaining jobs | |

Ordering not important

* ITERATE on unscheduled jobs

BSSI| in Action

#packets = 4

[° Bottleneck}

e Select
= Ordered Last

e

e Scale

* [terate

Weights:m
: : BOD

Scal ebwieigitettramaliite flow @ @ %
|ametetithwidrelok \

BUSRNOO LG UL TS AN SRS Ordel" . > . > .

End-to-End Design(Offline)

* Each host knows ordering

* Flows get priority of coflow

* Offloads to priority enabled transport layer

Per-flow Rate Allocation is Irrelevant

* Intuition: Sharing bandwidth does not help CCT

* Order-preserving schedule:

Flow blocked iff ingress or egress port serving higher-ordered flow

a

<

Given the BSSI ordering,
ANY per-flow rate allocation mechanism that is
work conserving & order-preserving
produces average CCT within 4x of optimal

N

4

Avoiding per-flow rate allocation: Implications

* Implement on top of any transport layer
= E.g. pFabric, pHost, TCP

* Design and implementation independent of

= Network Topology
= Location of Congestion

» Paths of Coflows [Details in paper}

* More scalable

= No reallocations upon coflow arrivals/departures

Handling Arbitrary Arrival Times

 Framework: Khuller, Li, Sturmfels, Sun, Venkat, ‘18

* Time divided into epochs

* In each epoch

= Choose subset of unscheduled jobs e - e—

= Schedule in next epoch using offlinealg. ° ! 2 4

P
Provides 12-competitive performance

(details in paper)

Fvaluation Overview

 Testbed implementation on top of TCP
= Evaluate impact of in-network congestion, and hardware constraints

e Simulations
= Coflows arrive at time 0
= Coflows arrive at arbitrary times
= Sensitivity analysis
» Coflow sizes, structure, # of coflows

> Network topologies, Oversubscription ratios, Network load
> ...

All simulations, workloads, and implementations are open-
sourced on Sincronia website

Simulation Results
Offline
526 coflow trace [Varys]

9
8

6
7

. Facebook trace

6
CCT(Va
CCT(Sirrc:

4 . 1000 coflow trace

. 2000 coflow trace

: KOCT: Completion
time of a coflow
1 22 24 26 28 210 212 214 216 218 .
Average 9Qth 99th OCT Bins in an unloaded
percentile percentile _ network

Sincronia not only provides near-optimal guarantees,
but also improves upon state-of-the-art design in practice

Simulation Results
Online

3.5 :Network Load = 0.9]

. 1000 coflow trace

CCT

OCT — Slowdown 2 B 2000 coflow trace

Average 9Qth 99th
percentile percentile

Even at such high network loads,
Sincronia achieves CCT close to that of an unloaded network

Implementation Results
Implemented on top of TCP

 16-server Fat tree topology X X X X
] . . . — ——
Full bisection bandwidth o/ o B 00 b e
= 20 PICAS8 switches
> Supports 8 priority levels O}(\) O}(\) JX\) f% f\) f\) (/X\] O}(\)

* DiffServ for priority scheduling

Implementatio

160

- Unfair Evaluation

140

TCP not designed for coflows
TCP not designed to minimize CT

120

100

+ Compare against existing designs 80

60

E.g. Varys reports 1.85x improvement
at mean and at tails 40

20

0

N Results

1IN

Average

90t percentile 99t percentile

-

Sincronia achieves significant improvements over existing network
designs even with a small number of priority levels

N

summary
* Sincronia — a network design for coflows

* 4x within optimal
* No per-flow rate allocation

Performance Run on existing Work Starvation
Guarantees Transport Conserving Avoiding

Varys
On Scheduling / x x x
Coflows (4-apx)
Sincronia (4_‘3/px) \/ \/ \/

* Paper discusses number of open problems

Thanks!

