SketchLearn: Relieving User Burdens in Approximate Measurement with Automated Statistical Inference

Qun Huang, Patrick P. C. Lee, Yungang Bao

Typical Approximate Measurement

Our goal: identify and relieve user burdens for approximate measurement

Errors need to be specified:

- bias: an answer deviates true answer by ε
- failure probability: fail to produce small-error answer with a probability δ

Large-threshold configurations fail to work for small-threshold queries No guideline for sufficiently small threshold

Vary across management operations and traffic characteristics

Domain knowledge is not always available

- Theories usually show worst-case results
- Configuration for worst case not practically efficient

Algorithm works on a particular flow-key

Flow-key definition must be fixed in deployment

Infeasible to track errors for a particular flow

Configuration only tells worst-case and overall errors

All User Burdens

Our Work

SketchLearn: Sketch-based measurement system with limited user burdens

- Relieve five user burdens
- Performance
 - Catch up with underlying packet forwarding speed
- Memory efficiency
 - Consume only limited memory
- > Accuracy
 - Preserve high accuracy of sketches
- > Generality
 - One design and one configuration for multiple tasks
 - Deployable in both software and hardware

Root Cause: Resource Conflicts

- > Previous work: perfect configuration to eliminate conflicts
 - Determined by many factors

High-Level Idea

- > Not pursue perfect configurations to mitigate resource conflicts
 - Hard to identify right trade-offs
- > Characterize resource conflicts in an "imperfect" configuration

How to Realize?

Design Data Structure

Multi-level Sketch [Cormode, ToN 05]

- L: # of bits considered
- ➤ Data structure: L+1 levels (from 0 to L), each of which is a counter matrix
- Level 0 is always updated
- Level k is updated iff k-th bit in a flowkey is 1
- All levels share same hash functions

Statistical Properties of Resource Conflicts

Properties

- ➤ Does a flow update level k?
 - Depends on inherent distribution of flow keys
- > Does a flow update bucket (i, j)?
 - Depends on hash functions of sketch

> A theory should characterize the above two factors

Main Theorem

<u>Main Theorem</u>: if no large flows, $R_{i,j}[k]$ follows Gaussian distribution with mean p[k]

Build Conflict Model

Statistical Model Inference

➢ Goals

- Extract all large flows
- Guarantee remaining flows in sketches are small
- Estimate Gaussian distributions for each level

> Challenges

No guidelines to distinguish large and small flows

Self-Adaptive Inference Algorithm

Extract large flows

Self-Adaptive Inference Algorithm

Large Flow Extraction

- > Intuition: a large flow
 - (i) results in extremely (large or small) $R_{i,j}[k]$, or
 - (ii) at least deviates $R_{i,j}[k]$ from its expectation p[k] significantly
- \triangleright Key idea: examine $R_{i,j}[k]$ and its difference from p[k], then
 - Determine k-th bit of a large flow (assuming it exists)
 - Estimate frequency
 - Associate flow confidence

Guarantee

- > Theorem: w is sketch width, flows exceeding 1/w of total must be extracted
 - Empirical results: even flows that are smaller than 1/w can also be extracted!

64KB: flows above 0.6% of total traffic can be extracted (by theorem)

Practice: >99% flows exceeding 0.3% are also extracted with 64KB

How to Perform Network-wide Queries?

Supported Network Queries

- Per-flow byte count
- > Heavy hitter detection
- > Heavy changer detection
- > Cardinality estimation
- > Flow size distribution estimation
- > Entropy estimation

Extended Query Model

- > Allow query for arbitrary flowkeys
 - Only use corresponding levels

- > Estimate actual query errors
 - Use attached errors for each large flow
 - Use Gaussian distributions

Putting It Together

(Slight) User Burdens

> Users now just need to configure the multi-level sketch

Example: 400 KB memory Require flows exceeding 0.1% 1000 columns

Implementation

- > Challenge: updating L+1 levels is time consuming
- > Solution: parallel updating
 - L+1 levels are independent
- > Software
 - Based on OpenVSwitch + DPDK
 - Parallelism with SIMD
- > Hardware
 - Based on P4 programmable switches
 - Parallelism with P4 pipeline stages

Evaluation

- > Platforms
 - Software: OpenVSwitch + DPDK
 - Hardware: Tofino swtich
 - Large-scale simulation
- > Traces
 - Caida 2017
 - Data center traffic (IMC 2010)

Fitting Theorem

> Guaranteed boundary of flow extraction

Flows that are guaranteed to be extracted

Arbitrary Flow Keys

> Query for three flow keys

Heavy hitter detection

Traffic size distribution

More Experiments

- > Resource consumption
- > Generality for various measurement tasks
- > Efficiency of attached query errors
- > Network-wide measurement

Conclusion

- > Analyze 5 user burdens in existing approximate measurement
- SketchLearn framework
 - Multi-level data structure design
 - Theory: counters follow Gaussian distributions when no large flows
 - Self-adaptive model inference algorithm
 - Extended query models
- Prototype and evaluations
- > Source code available at: https://github.com/huangqundl/SketchLearn

Limitations and Future Work

> Less pipeline consumptions

> Quantify Gaussian distributions and convergence rate

More applications