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We	want	low	latency!

In	the	datacenter
In	the	enterprise	WAN [B4,	BwE,	SWAN	…]

• operator	controls	both	WAN	and	sources
• … so	demands	are	predictable
In	the	ISP this	talk
• ISP	operator	does	not	control	sources
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All	
possible	topologies

connecting	a	set	of	PoPs

Venn	diagram
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Other
topologies	

SP	routing	gives
lowest	possible	

latency
Can’t	achieve	lower	latency	on	a	tree!

demands:	1	each

Shortest-path	routing	doesn’t	yield	lowest	latency	on	
all	topologies

capacity:	1.5
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Other
topologies	

Traffic	is	split,	low-latency	top	path	fully	loaded

demands:	1	each

Better	Topologies	May	Need	Better	Routing

Modern	TE	
(B4,	MPLS-TE)	give
lowest	possible	

latency

capacity:	1.5
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Other
topologies	

• Do	any	topologies	fall	in	
this	region?

• If	so,	do	any	of	them	have	
a	greater	potential	to	provide	
low	latency?

• Why	does	current	routing	
do	poorly	on	those	topologies?

Modern	TE	
(B4,	MPLS-TE)	give
lowest	possible	

latency

Do	Even	Better	Topologies	Need	Even	Better	
Routing?



Limitations	of
Today’s	Routing

Central	European	
network	of	GTS,	2010

Proof	by	example.	
Consider	this	real-world	

ISP	topology…
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SP	does	poorly,	as	expected
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B4	for	the	win	… sort	of
Jain,	Sushant,	et	al.	"B4:	Experience	with	a	globally-deployed	software	defined	WAN."	ACM	SIGCOMM	2013



Where	does	
greedy	routing	
such	as	B4	
go	wrong?

You	are	
here!



Let’s	focus	on	a	
small	part	of	the	
network

Where	does	
greedy	routing	
such	as	B4	
go	wrong?
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Limitations	of	greedy	routing
First	link	on	V->G
aggregate’s	shortest	
path	fills	eastbound

V

G

V->G’s	second
best	path	is	
already	full,
using	it	results	in	
congestion!

?

1.Allocate	as	much	as	possible	on	shortest	path
2.Allocate	to	longer	paths
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Limitations	of	greedy	routing

Rings	embedded	
in	a	topology	
can	trigger	this	
problem	
with	greedy	
routing
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does	exist!

So	GTS	is	amenable	to	low	latency.	Are	other	
topologies?
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How	might	we	quantify	a	topology’s	
potential	for	low	latency	under	load?

• Want	a	metric	to	capture	a	topology’s	inherent	potential	
for	low	latency

• Should	be:
• traffic	matrix-agnostic
• routing	algorithm-agnostic

• Want	to	capture	two	things:
• topology’s	potential	for	routing	around	congestion	hot	spots
• …without	incurring	long	propagation	delay

We	want	a	metric	that	rewards	
alternate	paths	with	short	

propagation	delay
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Links	on	
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Exclude	each	link	on	the	shortest	path;	can	we	route	Y	Gbps over	
one	or	more	alternative	paths	with	delay	<	1.4	T?	

3
5

Path	too	long	or	not	
enough	capacity
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Alternate	Path	Availability	(APA)

Y	Gbps

Shortest	path:
T ms total	propagation	delay
Y	Gbps SP	capacity

Exclude	each	link	on	the	shortest	path;	can	we	route	Y	Gbps over	
one	or	more	alternative	paths	with	delay	<	1.4	T?	

4
5
=	0.8

For	this	PoP pair	80%	of	the	links	on	the	SP	
have	an	alternate	path	with	acceptable	

low	latency
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Low-latency	path	diversity	(LLPD)

number	of	PoP pairs	with	APA	≥	0.7	
total	number	of	PoP pairs	

2.	Compute	LLPD	=	

1.	Compute	APA	for	all	PoP pairs

Fraction	of	PoP pairs	with	
“good”	path	availability

=

Empirically	derived;	
metric	not	sensitive	to	
picking	different	values
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100+	real-world	ISP	topologies,	
ranked	by	low-latency	path	diversity	(LLPD)



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
LLPD

0.0

0.5
fr

ac
tio

n
of

pa
ir

s
co

ng
es

te
d

GTS
90th percentile
Median

Generate	TMs	for	each	topology;	plot	fraction	of	(Src,Dst)	PoP
pairs	in	each	TM	that	crosses	at	least	one	congested	link
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Shortest	path	routing	congests	links

Two	points	per	topology:	median	TM	and	90th percentile	TM;	
line	shows	spread	of	distribution
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
LLPD

0.0

0.5
fr

ac
tio

n
of

pa
ir

s
co

ng
es

te
d

GTS
90th percentile
Median

Networks	with	high	LLPD	offer	lots	of	alternative	
paths	à shortest	path	routing	experiences	congestion

Shortest	path	routing	congests	links

No	surprises	here.	What	
about	B4?
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B4	congests	networks	with	high	potential	for	low	latency
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B4	congests	networks	with	high	potential	for	low	latency

Need	a	different	routing	scheme.	How	
about	one	that	prioritizes	avoiding	

congestion	above	all	else?
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• A	well-known	technique
called	MinMax

• Does	not	care	about	
propagation	delay
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33
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• Spread	traffic	out	to	leave	
spare	capacity	in	case	traffic	
levels	increase

• A	well-known	technique
called	MinMax

• Does	not	care	about	
propagation	delayHow	does	MinMax do?



MinMax inflates	propagation	delay

0.0

0.5

fr
ac

tio
n

of
pa

ir
s

co
ng

es
te

d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
LLPD

1.0

1.2

1.4la
te

nc
y

st
re

tc
h

GTS

90th percentile
Median

• Minimizes	utilization,
designed	to	avoid	
congestion



0.0

0.5

fr
ac

tio
n

of
pa

ir
s

co
ng

es
te

d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
LLPD

1.0

1.2

1.4la
te

nc
y

st
re

tc
h

GTS

90th percentile
Median

• Minimizes	utilization,
designed	to	avoid	
congestion

• Routes	some	flows	on	
paths	with	high	
propagation	delay

MinMax inflates	propagation	delay



0.0

0.5

fr
ac

tio
n

of
pa

ir
s

co
ng

es
te

d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
LLPD

1.0

1.2

1.4la
te

nc
y

st
re

tc
h

GTS

90th percentile
Median

• Minimizes	utilization,
designed	to	avoid	
congestion

• Routes	some	flows	on	
paths	with	high	
propagation	delay

One	extreme	of	the	design	
space.	The	other	one?

MinMax inflates	propagation	delay
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and	avoids	congestion

• Maximizes	utilization
of	links	on	low-delay
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Assume	it	is	possible	to	
compute	this	at	scale,	
more	about	that	later…
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Let’s	focus	on	a	single	traffic	matrix
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100%	utilization?	On	an	ISP?
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• expressed	the	problem	as	one	big	linear	program
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• efficient	iterative solution:	add	paths,	solve,	repeat	…
• 400+	nodes,	less	than	one	second	(vs.	tens	of	minutes…)
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Compute	latency-optimal	routing	solution,	sans	headroom
• expressed	the	problem	as	one	big	linear	program

(largely	straightforward)
• efficient	iterative solution:	add	paths,	solve,	repeat	…
• 400+	nodes,	less	than	one	second	(vs.	tens	of	minutes…)

Tune	headroom	dial	to	drive	routing	as	close	as	
possible	to	optimal	solution	while	avoiding	congestion
• predict	how	aggregates	will	statistically	multiplex	on	a	path

by	convolving	their	past	demands

More	details	in	the	paper!



Are	high-LLPD	networks	viable?

• A	routing	system	may	not	be	able	to	unlock	the	low-
latency	potential	of	a	topology

• LLPD	indicates	that	a	topology	has	good	potential	for	
low	latency
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• A	routing	system	may	not	be	able	to	unlock	the	low-
latency	potential	of	a	topology

• LLPD	indicates	that	a	topology	has	good	potential	for	
low	latency

• But	will	anyone	ever	really	build	a	modern	WAN	with	
high	LLPD?
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• Repeated	SP	experiment,	but	added	Google’s	network

Modern	high-LLPD	
network!

B4	however,	does	great	on	that	network!	Could	it	be	
because	the	routing	and	the	topology	co-evolved?		



What	topologies	would	people	build	if	they	knew	the	
routing	system	would	always	extract	the	best	from	it?



Conclusions
• To	achieve	low	latency:
• topology	must	provide	low-latency	paths
• the	routing	system	must	use	them	effectively

• State-of-the-art	routing	falters	on	high-LLPD	topologies—
precisely	those	with	best	potential	for	low	latency

• Practical	routing	approach	for	high-LLPD	topologies:
• Efficient	LP	solution	for	optimal	traffic	placement
• Tune	headroom	dial	to	avoid	congestion	(but	as	little	

toward	MinMax as	possible)
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• Simple,	centralized	design

But	measure	what?



Measurements

• Only	need	measurements	per	aggregate,	not	per	flow!
• Need	to	know	enough	to	figure	out	both	long	and	

short-term	variability	for	each	aggregate
• Sampling	traffic	level	10	times	per	second	is	enough	

to	capture	short-term	variability	due	to	TCP’s	
congestion	control…

• …since	RTTs	in	the	ISP	are	long	(order	of	100ms)
• Sampling	10	times	per	second	well	within	reach	of	

recent	hardware	[DevoFlow SIGCOMM	2011]



What	about	prioritization?

• If	you	can	you	should	definitely	prioritize	delay-
sensitive	traffic
• but	identifying	this	traffic	in	the	ISP	setting	may	not	

be	trivial,	since	no	single	operator	controls	all	
sources

• also,	what	about	bandwidth-hungry	low-latency	
traffic	(e.g.,	VR)


