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Contributions

New correctness results for general policy-rich distance-vector and

path-vector protocols:

• A new proof technique which allows us to avoid directly

reasoning about the asynchronous nature of the protocols.

• Using it we prove stronger and more general results than

previous work.

• All results are fully formalised in the theorem-prover Agda and

can be easily extended.
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Motivation

�I study distance-vector routing for my PhD":

Non-computer scientists: �Wow, that must be hard!"

Computer scientists: �Why are you doing that? Isn't that solved?"
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Motivation

• Routing oscillations (i.e. non-convergence)
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Motivation

• Multiple �nal states (i.e. non-deterministic convergence)
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Routing algebra

We abstract the key features of a routing protocol into a routing

algebra 1:

• A set of path weights

• A choice operator ⊕ de�ned on weights

• such that x ⊕ y is either equal to x or is equal to y

• A set of policy functions F used to label edges

• if you've con�gured a router think of an f ∈ F as a route map

• Some weak axioms for ⊕ and F .

1Inspired by Sobrinho 2005
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The hidden assumption

Q: So why do computer scientists think that routing is so easy?

A: In all common best-path problems the algebra is distributive.

f (x ⊕ y) = f (x)⊕ f (y)
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Example of violating distributivity

Shortest-paths with "no more than one blue edge".

• Path x has one blue edge in it

• Path y has no blue edges in it

• The edge A to B is blue

• Node B prefers route x , i.e. x ⊕ y = x

A B C
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We will de�ne a policy-rich algebra as one that allows us to

violate distributivity.
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Previous work: Sobrinho

Sobrinho 2005 showed there is a hierarchy of correctness conditions

for path-vector protocols:

• Distributive algebras (long history of semirings)

• Strictly increasing algebras

• Networks with only algebraically free-cycles
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Distributivity

The algebra is distributive i�:

∀f , x , y : f (x ⊕ y) = f (x)⊕ f (y)

i.e. everyone has a common preference order

Advantages:

• Global optimum!

Disadvantages:

• Very restrictive as to the problems you can solve.
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Cycle-freeness

A network's cycles are free with respect to an algebra if going

around a cycle is never an improvement.

Advantages:

• Least restrictive. Necessary for convergence.

Disadvantages:

• Conditions on the topology not just the algebra.

• Requires global coordination to check!

• Verifying whether a network is cycle-free is NP-hard.
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Strictly increasing

An algebra is strictly increasing if extending a route makes it worse:

∀f , x : x < f (x)

where x ≤ y , x ⊕ y = x , x < y , x ≤ y and x 6= y .

Advantages:

• Property of the algebra, hence independent of the network.

• Much more expressive than distributive algebras.

• Conditional policies (�route maps�) preserve this property.

Disadvantages:

• Local optimums instead of global optimums.

• Only a su�cient rather than a necessary condition.
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Our results

If the algebra is strictly increasing then:

• Path-vector protocols converge to a unique solution.

• Distance-vector protocols with a �nite set of weights converge
to a unique solution.

• even policy rich ones

• Doesn't require in-order reliable delivery.

Our proofs use new techniques.
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New techniques

Strictly increasing algebra

Ultrametric conditions

Async. contracting operator

Asynchronous convergence

⇓

⇓

⇓

This paper

Gurney 2017

Üresin & Dubois 1990

This talk will not go into the details. If interested please read the

paper!
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Agda

All results formalised in the theorem proving language Agda.

The library is freely-available and easily extendable.

• http://wiki.portal.chalmers.se/agda/pmwiki.php

• https://github.com/MatthewDaggitt/agda-routing
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Applications to BGP?

What are the problems with the algebra of BGP?

1. The MED attribute means that the ≤ order is not transitive,

which is nearly impossible to reason about.

2. Local preferences are erased so the algebra is not strictly

increasing i.e. f (x) < x .

It may be impossible to use our results in inter-domain BGP but we

hope our results may be applicable to intra-domain BGP

applications such as data centres.

Beyond BGP we hope that the results will be used when designing

new policy-rich distance-vector and path-vector protocols.
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Policy-rich example

We have de�ned a policy-rich shortest paths algebra, inspired by

BGP.

Routes can be tagged with community values and these can be

used by policies to make decisions.

Unlike BGP the local preferences are never erased.

This has been de�ned in Agda and proved correct.

It can easily implement the �no more than two blue links� example.
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Open questions

• Can we incorporate checks for strict increasingness into
automatic policy generation tools?

• e.g. Propane (Beckett et al. SIGCOMM 2016)

• Is it possible to have hidden information in a strictly increasing

algebras without global coordination?

• What's the rate of convergence of strictly increasing algebras?

• Partial answer in our upcoming ICNP paper.
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Agda example: routes

Routes are de�ned as follows:

data Route : Set where

invalid : Route

valid : LocalPref → CommunitySet → SimplePath n → Route



Agda example: choice

The choice operator ⊕ is de�ned as follows:

_⊕_ : Route → Route → Route

invalid ⊕ s = s

r ⊕ invalid = r

r@(valid l cs p) ⊕ s@(valid k ds q) with <-cmp l k

... | tri< l<k _ _ = r

... | tri> _ _ k<l = s

... | tri≈ _ l=k _ with <-cmp (length p) (length q)

... | tri< |p|<|q| _ _ = r

... | tri> _ _ |p|>|q| = s

... | tri≈ _ |p|=|q| _ with p ≤lex? q

... | yes p≤q = r

... | no p�q = s



Agda example: extensions

data Policy : Set1 where

reject : Policy

addComm : Community → Policy

delComm : Community → Policy

compose : Policy → Policy → Policy

condition : Condition → Policy → Policy

incrPrefBy : N → Policy



Agda example: extensions

f : (Node × Node × Policy) → Route → Route

f _ invalid = invalid

f (i , j , policy) (valid l cs p) with i /∈? p

... | no i∈p = invalid

... | yes i/∈p = apply policy (valid l cs ((i , j) :: p | i/∈p))
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