A Measurement Study on Multi-path TCP with Multiple Cellular Carriers on High Speed Rails

Li Li*, Ke Xu*, Tong Li[†], Kai Zheng[†], Chunyi Peng^r,
Dan Wang⁺, Xiangxiang Wang^{*}, Meng Shen [|], Rashid Mijumbi[‡]

#

High Speed Rails (HSRs)

Increasing need for acceptable quality of network services

Single-Path Degradation on HSRs

Frequent handoff is the main cause of performance degradation [Li, INFOCOM15] [Li, TON17]

Benefit from Carrier Complementarity

Making use of the difference in handoff time between carriers

CDF of inter-carrier handoff interval

An example of two complementary carriers

To explore potential benefits of using Multi-path TCP (MPTCP)

80

100

Measurement Challenges

- Many intertwined factors
 - External: terrain, speed, handoff and network type, etc.
 - Internal: flow size and algorithms (congestion controller or scheduler), etc.
- Location and time bias
 - Same location vs high speed mobility
 - Same time vs flow interference
- Effort and time intensive
 - Many people and much money
 - Massive data traces on various HSR routes

Measurement Methodology

Measurement setup

USB cellular modems, USB WiFi modems accessing smartphone hotspots

MobiNet

Geographical location, train speed, network type and handoffs

Footprints

Accumulated 82,266 km: 2x Earth Equatorial Circumference

Analysis Method

Filtering data—terrain, speed, handoff and network type

- Only consider data in 4G LTE networks in areas of open plains
- Only consider two cases: static and high speed (280-310km/h)

Comparison between MPTCP and TCP

- Same flow size/duration, at the same train speed, with similar handoff frequency, in the same carrier network
- Stable MPTCP kernel implementation v0.91: www.multipath-tcp.org

Decision Making

- Robustness: If MPTCP outperforms either of the two single TCPs
- Efficiency: If MPTCP outperforms **both** single TCPs

Mice Flows

File Completion Time (FCT)

FCT of mice flows (<1 MB)

M: Carrier M U: Carrier U

		МРТСР		Top (I	Top (I
	Speed (km/h)	Sub-flow (M)	Sub-flow (U)	TCP flow (M)	TCP flow (U)
MS-US	0	0 handoff	0 handoff	0 handoff	0 handoff
M0-U0	280-310	0 handoff	0 handoff	0 handoff	0 handoff
M0-U1	280-310	0 handoff	1 handoff	0 handoff	1 handoff
M1-U0	280-310	1 handoff	0 handoff	1 handoff	0 handoff

TCP (M): single-path TCP using Carrier M

TCP (U): single-path TCP using Carrier U

MPTCP: dual-path MPTCP using Carrier M

and Carrier U, simultaneously

Performance of Mice Flows

Decision Making

- Robust: If MPTCP outperforms either of the two single TCPs
- Efficient: If MPTCP outperforms **both** single TCPs

FCT of mice flows (<1 MB)

Performance of Mice Flows

FCT of mice flows (<1 MB)

Decision Making

- Robust: If MPTCP outperforms either of the two single TCPs
- Efficient: If MPTCP outperforms **both** single TCPs

Cannot achieve advantage over TCP in efficiency

Performance of Mice Flows

FCT of mice flows (<1 MB)

Decision Making

- Robust: If MPTCP outperforms **either** of the two single TCPs
- Efficient: If MPTCP outperforms **both** single TCPs

Handoff leads to efficiency reduction

Inefficient sub-flow establishment

Sub-flow Establishment: Normal Case

Neither of two paths suffers a handoff

Sub-flow 1

Sub-flow 2

Sub-flow Establishment: Handoff Case

Either of two paths suffers a handoff

Unlucky Case

Sub-flow Establishment Time

0.9 8.0 Long tail 0.6 0.5 0.4 0.3 Static **--** 280-310km/h, neither path suffers a handoffs 280-310km/h, either path suffers a handoffs 0.1 Total sub-flow establishment time (s)

CDF of total number of handshakes

CDF of Sub-flow establishment time

MPTCP's efficiency of sub-flow establishment is low on HSRs

Elephant Flows

Performance of Elephant Flows

Metric: average rate during 100 seconds

 Variable: train speed and number of handoffs suffered

$$R_{poorer} = \frac{MPTCP}{\min(TCP_i)} > 1 \text{ Robustness}$$

$$R_{better} = \frac{MPTCP}{\max(TCP_i)} < 1$$
 Efficiency

$$R_{total} = \frac{MPTCP}{\text{sum}(TCP_i)}$$
 < 1 Aggregation

 Results remain constant, but reasons are different!

Poor adaptability of congestion control and scheduling to frequent handoffs

Congestion Control: Traffic Distribution

Contribution rate of dominant sub-flow to quantify degree of traffic distribution balance

$$D_{balance} = \frac{\max(TCP_i)}{\sup(TCP_i)} \approx 1$$
 Balance

- Packet loss causes window drops
- Window distribution imbalance leads to traffic distribution imbalance
- Coupled congestion controllers
 - LIA [Raiciu et.al, RFC 6356]
 - OLIA [Khalili et.al, IETF draft]
 - Transfer traffic from a congested path to a less congested one

*More details please refer to the paper.

Scheduling: Out of Order Problem

Out-of-order queue size rises

Static Cases

Out-of-order problem is not serious in static cases

High Speed Mobility Cases

MPTCP's efficiency of congestion control and scheduling is low on HSRs

Key Takeaways

- Insights: reliability enhancement rather than bandwidth aggregation
 - Significant advantage in robustness
 - Efficiency of MPTCP is far from satisfactory
- Cause: poor adaptability to frequent handoffs
 - Mice: sub-flow establishment
 - Elephant: scheduling and congestion control
- Suggestions: handoff pattern detection and prediction

Thank You!

Email: <u>li.tong@huawei.com</u>

Homepage: https://leetong.weebly.com

Data traces are available at http://www.thucsnet.org/hsrmptcp.html