A Measurement Study on Multi-path TCP with Multiple Cellular Carriers on High Speed Rails

Li Li*, Ke Xu*, Tong Li†, Kai Zheng†, Chunyi Peng‡,
Dan Wang┴, Xiangxiang Wang*, Meng Shen∥, Rashid Mijumbi‡
High Speed Rails (HSRs)

Length: 38,000 km
China: 66%
Speed: 310 km/h
Passenger: 1.7 billion
Growing: 30%
2020: 30,000 km

Europe: Thalys
Japan: Shinkansen
China: High speed mobility

Increasing need for acceptable quality of network services
Single-Path Degradation on HSRs

Frequent handoff is the main cause of performance degradation [Li, INFOCOM15] [Li, TON17]
Benefit from Carrier Complementarity

Making use of the difference in handoff time between carriers

CDF of inter-carrier handoff interval

An example of two complementary carriers

To explore potential benefits of using Multi-path TCP (MPTCP)
Measurement Challenges

• Many intertwined factors
 – External: terrain, speed, handoff and network type, etc.
 – Internal: flow size and algorithms (congestion controller or scheduler), etc.

• Location and time bias
 – Same location vs high speed mobility
 – Same time vs flow interference

• Effort and time intensive
 – Many people and much money
 – Massive data traces on various HSR routes
Measurement Methodology

Measurement setup
USB cellular modems, USB WiFi modems accessing smartphone hotspots

MobiNet
Geographical location, train speed, network type and handoffs

Footprints
Accumulated 82,266 km: 2x Earth Equatorial Circumference
Analysis Method

Filtering data—terrain, speed, handoff and network type
- Only consider data in 4G LTE networks in areas of open plains
- Only consider two cases: static and high speed (280-310km/h)

Comparison between MPTCP and TCP
- Same flow size/duration, at the same train speed, with similar handoff frequency, in the same carrier network
- Stable MPTCP kernel implementation v0.91: www.multipath-tcp.org

Decision Making
- Robustness: If MPTCP outperforms either of the two single TCPs
- Efficiency: If MPTCP outperforms both single TCPs
Results

Mice Flows
File Completion Time (FCT)

M: Carrier M U: Carrier U

<table>
<thead>
<tr>
<th>Speed (km/h)</th>
<th>MPTCP</th>
<th>TCP flow (M)</th>
<th>TCP flow (U)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sub-flow (M)</td>
<td>Sub-flow (U)</td>
<td></td>
</tr>
<tr>
<td>MS-US</td>
<td>0 handoff</td>
<td>0 handoff</td>
<td>0 handoff</td>
</tr>
<tr>
<td>M0-U0</td>
<td>280-310</td>
<td>0 handoff</td>
<td>0 handoff</td>
</tr>
<tr>
<td>M0-U1</td>
<td>280-310</td>
<td>1 handoff</td>
<td>0 handoff</td>
</tr>
<tr>
<td>M1-U0</td>
<td>280-310</td>
<td>1 handoff</td>
<td>0 handoff</td>
</tr>
</tbody>
</table>

TCP (M): single-path TCP using Carrier M
TCP (U): single-path TCP using Carrier U
MPTCP: dual-path MPTCP using Carrier M and Carrier U, simultaneously

FCT of mice flows (<1 MB)
Performance of Mice Flows

FCT of mice flows (<1 MB)

Decision Making
- Robust: If MPTCP outperforms either of the two single TCPs
- Efficient: If MPTCP outperforms both single TCPs

Robustness Efficiency
Performance of Mice Flows

FCT of mice flows (<1 MB)

Decision Making
- Robust: If MPTCP outperforms either of the two single TCPs
- Efficient: If MPTCP outperforms both single TCPs

Robustness

Efficiency

Cannot achieve advantage over TCP in efficiency
Performance of Mice Flows

Decision Making
- Robust: If MPTCP outperforms *either* of the two single TCPs
- Efficient: If MPTCP outperforms *both* single TCPs

Handoff leads to efficiency reduction

Inefficient sub-flow establishment

FCT of mice flows (<1 MB)
Sub-flow Establishment: Normal Case

Neither of two paths suffers a handoff

Sub-flow 1

Sub-flow 2
Sub-flow Establishment: Handoff Case

Either of two paths suffers a handoff

Lucky Case

5 handshakes

Unlucky Case

5 handshakes

3 handshakes

3 handshakes

Handoff path

Handoff path

Either of two paths suffers a handoff

Lucky Case

5 handshakes

Unlucky Case

3 handshakes

Handoff path
Sub-flow Establishment Time

CDF of total number of handshakes

CDF of Sub-flow establishment time

MPTCP's efficiency of sub-flow establishment is low on HSRs
Results

Elephant Flows
Performance of Elephant Flows

- Metric: average rate during 100 seconds

- Variable: train speed and number of handoffs suffered

\[R_{poorer} = \frac{MPTCP_{\min(TCP_i)}}{\min(TCP_i)} > 1 \] Robustness

\[R_{better} = \frac{MPTCP_{\max(TCP_i)}}{\max(TCP_i)} < 1 \] Efficiency

\[R_{total} = \frac{MPTCP_{\sum(TCP_i)}}{\sum(TCP_i)} < 1 \] Aggregation

- Results remain constant, but reasons are different!

Poor adaptability of congestion control and scheduling to frequent handoffs
Congestion Control: Traffic Distribution

- Contribution rate of dominant sub-flow to quantify degree of traffic distribution balance

\[D_{\text{balance}} = \frac{\max(TCP_i)}{\text{sum}(TCP_i)} \approx 1 \]

- Packet loss causes window drops

- Window distribution imbalance leads to traffic distribution imbalance

- **Coupled** congestion controllers
 - LIA [Raiciu et al., RFC 6356]
 - OLIA [Khalili et al., IETF draft]
 - Transfer traffic from a congested path to a less congested one

More details please refer to the paper.
Scheduling: Out of Order Problem

• Out-of-order queue size rises
Static Cases

- Out-of-order problem is not serious in static cases
High Speed Mobility Cases

MPTCP’s efficiency of congestion control and scheduling is low on HSRs
Key Takeaways

• **Insights:** reliability enhancement rather than bandwidth aggregation
 - Significant advantage in robustness
 - Efficiency of MPTCP is far from satisfactory

• **Cause:** poor adaptability to frequent handoffs
 - Mice: sub-flow establishment
 - Elephant: scheduling and congestion control

• **Suggestions:** handoff pattern detection and prediction
Thank You!

Email: li.tong@huawei.com
Homepage: https://leetong.weebly.com
Data traces are available at http://www.thucsnet.org/hsrmptcp.html