AWStream: Adaptive Wide-Area
Streaming Analytics

Ben Zhang, Xin Jin, Sylvia Ratnasamy
John Wawrzynek, Edward A. Lee

Presented by Radhika Mittal (not a co-author)

PowerPoint File is available at:
https://awstream.github.io/talk/talk.pptx

Ben Zhang
PowerPoint File is available at:
https://awstream.github.io/talk/talk.pptx�

Wide-Area Streaming Analytics

Demand Resource

Huge data generated at Scarce and varying WAN
the edge bandwidth

Demand: Huge Data at the Edge

* Machine logs, 25 TB daily at Facebook (2009)

* Electrical grid monitoring, 1.4 million data points per second
[Andersen and Culler, FAST 16]

* Video surveillance, 3 mbps per camera [Amerasinghe, 2009]

* ... Dropcam, a Wik1 video-streaming camera and associated
cloud backend service for storing and watching the resulting
video. Dropcam has the fewest clients (2,940) Yet, each
client uses roughly 2.8 GB a week and uploads nearly 19 times
more than they download, implying that Dropcam users do
not often watch what they record. [Biswas, SIGCOMM €15]

Resource: Scarce and Varying

WAN Bandwidth

Less than 25%

-|£—v — 100 A e%e®*t ¢ p-e *q
2% 75- Ve ey [N sertetetet a
; O e 0%°e% 0% o0% . \ II “ ,“ !
S Q9 507 oo oy
C & 25- :
O ~
M 0 - | | | |

06:00 12:00 18:00 00:00 06:00

Time

Bandwidth variations throughout the day between Amazon
EC2 sites. Similar scarcity and variation for wireless
networks, broadband access networks and cellular networks.

4

What happens when bandwidth

becomes insufficient?

* TCP ensures data delivery, but hurts latency
* UDP sends fast, sutfering uncontrolled packet loss

* Manual policies (developer heuristics) are sub-optimal
* JetStream [Rabkin et al., NSDI 14] uses manual policy
* “if bandwidth 1s insufficient, switch to sending images at
75% fidelity, then 50% if still not enough”
* Application-specific optimizations don’t generalize

* (more on the next slide)

Application-specitic optimizations
don’t generalize

For a surveillance application that
detects pedestrians on a busy street

Positive if intersection over

union (IOU) larger than 0.5.

I0OU=0.2 I0U=0.5 IOU=0.8

t=1s, small difference

Application-specitic optimizations

don’t generalize

t=1s, small difference

For a surveillance application that
detects pedestrians on a busy street

Adapting Frame Rate

B Bandwidth (normalized) M Acccuracy

100100
7 84
9 I
—
2

100

5

o

Adapting Resolution

o

B Bandwidth M Acccuracy
100100
29 87

17 11
|| 1 || .I

1080p 900p 720p 540p 360p

100

5

o

o

Application-specitic optimizations
don’t generalize

For an application that detects
objects on a mobile phone

Adapting Frame Rate

B Bandwidth (normalized) ™ Acccuracy
100100

100
0
Adapting Resolution ,\
B Bandwidth (normallzed) | Acccuracy é
100100

100

) II II lI
0

t=1s, large difference due to camera movement 1080p 900p 7200 540p 360p

65 64

What happens when bandwidth

becomes insufficient?

* TCP ensures data delivery, but hurts latency
* UDP sends fast, sutfering uncontrolled packet loss

* Manual policies (developer heuristics) are sub-optimal
* JetStream [Rabkin et al., NSDI 14| uses manual policy

° (49

it bandwidth is insutficient, switch to sending images at
75% fidelity, then 50% if still not enough”
* Application-specific optimizations don’t generalize

* Adaptation often requires expertise and manual work to
explore multidimensional adaptation for each application

Fidelity vs. Freshness

Fidelity, accuracy (%)

1.0 1
over TCP Manual" 4
05 Policies App—specific
?& Streaming
over UDP
0.0 - @)
1CI)O 1IO 1| Oi1

Freshness, latency reversed (seconds)

10

Fidelity vs. Freshness

<)
S 1.0 3 5
> :
) Streaming O AWStream
g over TCP II;/Ie}nl_Jal sirea
S 0.5- I App-specific
©
> %e/ reaming
% over UDP
© 0.07 O
|_|_ T T T T

100 10 1 0.1

Freshness, latency reversed (seconds)

* Applications must be adaptive.

* Adaptation policies must be,

* precise

* automatically generated
* for each application

S—

Pareto-optimal Profile: maximizing
application accuracy while satisfying
bandwidth requirement (avoid congestion)

11

AWStream Overview

* Systematic and quantitative adaptation

* New programming abstractions to express adaptation

* Automatic data-driven profiling

* Runtime adaptation balancing freshness and fidelity

Develop

Application

maybe APIs

N

Training
Data

r

Accuracy
Function

Profiling

Oftline
Profiling

Online
Profiling

\

Profile

var | bw

accC

1920 | 10.7

100

1280 | 8.3

91

r

Online
Data

Runtime

Runtime

Adaptation

Resource

Allocation

12

(1) Streaming Operators and APIs

Data Stream —>{ Operator [——> Data Stream

(x1,x2,x3, x4, ... }—> map() |——> {f(x1), f(x2), f(x3), f(x4), ... }

()

{x1,x2,x3, x4, ... }—> window(2, f) —> { f(x1, x2), {(x3, x4), ... }

()

{x1,x2,x3,x4, ... }—/> maybe(k, f) ——> { f(x1, k1), f(x2, k2), f(x3, k3), f(x4, k4)...

.

k is a tunable knob

map (f: 1= 0)
skip (i: Integer)

Normal Operators sliding_window (count: Integer, f: Vec<I> = O)

Stream<I> = Stream<O>
Stream<I> = Stream<I>
Stream<I> = Stream<O>

maybe (knobs: Vec<T>, f: (T, I) = I)

Degradation Operators

Stream<I> = Stream<I>

13

(1) maybe APIs in use

let quantized = vec![1l, 2, 3, 4].into stream()
.maybe(vec![2, 4], |k, val| val / k)
.collect();

No
1,2 .
W{a >3>4> }
{1;&3,«.”}-——+{ maybe quantize j\\\\\iji: > {0,1,1,2

k=4 {0,0,0,1, ..

let app = Camera::new((1920, 1080), 30)
.maybe downsample(vec![(1600, 900), (1280,
.maybe skip(vec![2, 5])
.map(| frame| pedestrian detect(frame))

.compose();

b b4

720) 1)

3

9 oo

3

14

(2) Data-driven profiling

let app = Camera::new((1920, 1080), 30)
.maybe downsample(vec![(1600, 900), (1280, 720)1])
.maybe skip(vec![2, 5])

.map(| frame| pedestrian detect(frame))

.compose();

Training
Data
downsample skip bandwidth accuracy
Accuracy
(1920, 1080) 0 10.7 1.0 Functi
unction
(1600, 900) 0 8.3 0.88
%
(1280, 720) 0 6.3 0.87
(1920, 1080) 2 9.3 0.90

15

(2) Protile: Pareto-optimal Strategy

1
configuration bandwidth accuracy Q
cl 10.7 1.0 - ¢ P
3 0 5 .0 ®

2 8. .88 =
c 5 o © C I
c3 6.3 0.87 < ° o ©®
c4 9.3 0.90 ® o

0

0

Bandwidth (normalized)

P={ceC:{c" €C:B(c) < B(c),A(c") > A(c)} = @}
the set of better configuration ¢’

16

(3) Runtime Adaptation

Stream
Source

1| Client (Edge)

data Application

v

Socket

> Analytics

Server

17

(3) Runtime Adaptation

—> data Application
- - == control System
Stream
Source Queue
15 > > Socket > Receiver —>| Analytics
A | o ;
I 1 : I //
| 1 "
| v ' L
o Adaptation d4--7
Controller (AC)
h Client (Bdge) Server

Y Y [N

[Startup]—>[Degrade |, | Steady |E Probe]

\\§
Multiplicative \ Additive
Decrease Increase

y

18

Accuracy

(3) Probing at Runtime

N N\

\ 4

[Startup]—>[Degrade |,

J

[N

Steady | Probe J

<——§"’"

® ' Oscillate
°*
o ©® 5
.
Available
Bandwidth |

0 1

Bandwidth (normalized)

These configurations are discrete

Without probing, applications can
jump to the next configuration that
demands too much bandwidth.
They end up oscillate between
configurations.

Probing (with dummy traffic)
stabilizes adaptation.

19

Quantization is a parameter exposed

Appllc ath ns from the video encoder (H.264)

Application Knobs Accuracy Dataset
Augmented Resolution F1 Score iPhone video clips
Reality Frame rate (Rijsbergen, 1979] Training: office, 24s
[Quantization] Testing: home, 240s
Pedestrian Resolution F1 Score MOT 16 [Milan et al., 2016]
Detection Frame rate Training: MOT 16-04
| Quantization | Testing: MOT 16-03
Log Analysis Head(N) Kendall’s Tau SEC.gov logs
(Top-K, K=50) Threshold(T) [Abdi, 2007] Training: 4 days

Testing: 16 days

20

Applications

Application Knobs Accuracy Dataset
Augmented Resolution F1 Score iPhone video clips
Reality Frame rate [Rijsbergen, 1979] Training: office, 24s
Quantization Testing: home, 240s
Pedestrian Resolution F1 Score MOT 16 [Milan et al., 2016]
Detection Frame rate Training: MOT 16-04
QQuantization Testing: MOT 16-03
Log Analysis Head(N) Kendall’s Tau SEC.gov logs

(Top-K, K=50) | Threshold(T) [Abdi, 2007]

Training: 4 days
Testing: 16 days

21

Adaptation in Top-K

Global Top-K

after merge

(f2:5)

(f1: 4)

<f3 4) TOP—I<
Merge p—— (K=1)

File Access Group into Take top-3 Filter with
Logs (file: count) with head(3) threshold 2
G
fl (£2: 2)
£2 (£3: 1) (F1: 4)
2 1) ... (2:2)
| Wing ' maybe .+ 31D maybe ' (f1: 4)
Log ¥ fndow —P head(N) —P threshold(T) (f2 2)
(1 second) N=3 ; T \
Client (Source) sremmeer Temeeeeees '
Loo —» Window \ ' hrnaglfbe : I E h miylig :ﬂ
°8 (1 second) : §_<?)N> : ‘ re,sr_oz M (f2: 3)

Client (Source)

Server (Analytics)

2

Adaptation in Top-K

{2 is not Top-1 in either client, and could have
been purged with different parameter N or T

(t1: 4)

(f1: 4)
f1 (f2: 2)
2 () (f1. 4)
2 (f4: 1) ____ ... (f2:2) Yoo
Wind e maybe : Zf'g I; : maybe v (f1: 4)
Log ¥ OV headN) —— threshold(1) | (f2: 2)
(1 second) ' _ X ' _
: N—3 . ' T—2 '\
Client (Source)y ~ °~°°°°°°° =777 °7°°°")
. ' maybe . : maybe :/
Log || Window 1 g p (d(N) ——= threshold(T) -
(1 second) : N=3 ' T=2 v (2: 3)

Client (Source)

(f3: 4) To
p-K
Merge p—— (K=1)

Server (Analytics)

23

2

Evaluations

* Can AWStream generate accurate profiles across
multiple dimensions?

* Can AWStream runtime improve data freshness and
fidelity when facing insufficient bandwidth?

24

Profiles across multiple dimensions

Accuracy (F1 Score)

* Optimal strategy needs multiple dimensions

Pedestrian Detection

- - Pareto boundary - = - tune quantizer

tune framerate

- +- tune resolution

1.00 - ,..—I”}‘
p =" ++

0.75 1 ik K
050 7 ’/ﬂ ,I Il
025] ,./ // I'

1] +
0.00 L | |

1 100

Bandwidth (Mbps)

Accuracy (F1 Score)

Augmented Reality

- - Pareto boundary - = - tune quantizer

tune framerate

- +- tune resolution

1.00 A !_”.,/.45?#'
0.75 1 R
050 o=
0254 .
¢ "
0.00 | |
1 100

Bandwidth (Mbps)

* For the same application, different dimensions have different impact.
PP > p

* FPor different applications, the same dimension has different impact.

25

Profiles are precise

Accuracy (Kendall's 1)

- - Pareto boundary - =- tune T
tune N

1.0 1 ———
(’J" - ——.‘.
=~.—,.
084 2*
”
064
0.4 - : : :
10 100 1000

Bandwidth (Kbps)

* The effect of each dimension is
not significantly different.

* The profile offers quantified
effects of adaptation options.

26

Runtime Performance Baselines

Baseline

Description

Streaming over TCP

Streaming over UDP

JetStream

[Rabkin et al., 2014]

JetStream++

HLS
[Pantos and May, 2010]

A non-adaptive approach

A non-adaptive approach, representing
RTP/UDP/RTSP video streaming

Manual Policy: “if bandwidth is insufficient, switch
to sending images at 75% fidelity, then 50% if there
still isn’t enough bandwidth. Beyond that point,
reduce the frame rate, but keep the image fidelity.”

Uses adaptation policy generated by AWStream.
JetStream runtime does not probe (hence may
oscillate between policies).

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2010].

27

Latency Throughput

(seconds)

Accuracy

Streaming over TCP = = = Streaming over UDP

_ TCP catching up
— 20.0- More Traffic shaping

jc’éuf»-o- WA A Srpsadediy
m%ﬁé%mgmﬁﬁﬁm ¥
~— 504 ‘Traffic b ks

O_ shaping

Remove shaping

200 400 600

100 -
10.0 -

—
o
1

TCP hurts latency

0.1~

1.00 1 Rp———— P
™ g‘*f" fﬁﬁmw

0.75 -
0.50 ~
0.25 A

~ 0.00 - o oo :
0 200 400 600

Time (seconds)

I
1 UDP hurts accuracy
;

F1 Score)

28

- =+ = JetStream
- = — Streaming over TCP = * = Streaming over UDP

200 400 600

EPgre
%é’. 15.0 -
5 c 10.0 4
c — 5.0
= 0.0
0
___ 100
T 10.0-
g .
Q
(4y]
—

 Manual policy does not
have enough adaptation

1.00 A
0.75
0.50 A
0.25

Accuracy
(F1 Score)

0.00 -

200 400 600

Time (seconds)
29

JetStream++ - = — JetStream
— = — Streaming over TCP = = = Streaming over UDP

25.0
20.0
15.0
10.0

Throughput
(mbps)

o
o O
1

1.00 A
0.75
0.50 A
0.25 4

0.00 e |
0 200 400 600

Time (seconds)

1 Policy Oscillation

Accuracy
(F1 Score)

30

JetStream++ - = — JetStream
- — HLS — = — Streaming over TCP = = = Streaming over UDP

25.0
20.0
15.0
10.0

Throughput
(mbps)

o o
o o
1 1

Latency due to

10- '| T e buffering
' |

1.00 A
0.75
0.50 -
0.25

0.00 - T |
0 200 400 600

Time (seconds)

Accuracy
(F1 Score)

31

- = — AWStream

T

Throughput
(mbps)

(seconds)

Latency

Accuracy
(F1 Score)

HLS

JetStream++ - = — JetStream
— = — Streaming over TCP = = = Streaming over UDP

25.0
20.0
15.0
10.0

5.0+

0.0+

0

100 ~
10.0

o —
- o
1 1

600 Low latency
High accuracy

1.00 A
0.75
0.50 -
0.25
0.00 -

400
Time (seconds)

200

32

Runtime Performance Summary

Latency (ms) Accuracy (F1 score)
AWStream-{ {[— N —
JetStream++ --—T S |
JetStream - o e— —I+
HLS 4t - —T+
Streaming over TCP - R I - |
Streaming over UDP - | } - -
100 1000 10000 0O 02 04 06 08 1
& 101
s | Sl o S
: el
o over TCP I';AEI‘.“.
§ 0.5- 0N App-specific
@
< .
= e Streaming
D %/ over UDP
© 0.0 @)
L T T T T
100 10 1 0.1

Freshness, latency reversed (seconds)

Conclusion

* The emerging wide-area streaming analytics
* They are becoming pervasive with more IoT applications

* They must address scarce and varying WAN bandwidth
* We present AWStream.

* A systematic and quantitative approach towards adaptation
* Novel APIs, automatic profiling, and runtime adaptation

* For more questions,
* Contact: Ben Zhang, benzh(@cs.berkeley.edu
e Slides: https://awstream.github.io/talk/talk.pdf
* Repository: https://github.com/awstream

34

