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Wide-Area Streaming Analytics

Demand Resource

Huge data generated at Scarce and varying WAN
the edge bandwidth



Demand: Huge Data at the Edge

* Machine logs, 25 TB daily at Facebook (2009)

* Electrical grid monitoring, 1.4 million data points per second
[Andersen and Culler, FAST 16]

* Video surveillance, 3 mbps per camera [Amerasinghe, 2009]

* ... Dropcam, a Wik1 video-streaming camera and associated
cloud backend service for storing and watching the resulting
video. Dropcam has the fewest clients (2,940) . . .. Yet, each
client uses roughly 2.8 GB a week and uploads nearly 19 times
more than they download, implying that Dropcam users do
not often watch what they record. [Biswas, SIGCOMM €15]



Resource: Scarce and Varying

WAN Bandwidth

Less than 25%
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Bandwidth variations throughout the day between Amazon
EC2 sites. Similar scarcity and variation for wireless
networks, broadband access networks and cellular networks.
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What happens when bandwidth

becomes insufficient?

* TCP ensures data delivery, but hurts latency
* UDP sends fast, sutfering uncontrolled packet loss

* Manual policies (developer heuristics) are sub-optimal
* JetStream [Rabkin et al., NSDI 14] uses manual policy
* “if bandwidth 1s insufficient, switch to sending images at
75% fidelity, then 50% if still not enough”
* Application-specific optimizations don’t generalize

* (more on the next slide)



Application-specitic optimizations
don’t generalize

For a surveillance application that
detects pedestrians on a busy street

Positive if intersection over

union (IOU) larger than 0.5.

I0OU=0.2 I0U=0.5 IOU=0.8

t=1s, small difference



Application-specitic optimizations

don’t generalize

t=1s, small difference

For a surveillance application that
detects pedestrians on a busy street
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Application-specitic optimizations
don’t generalize

For an application that detects
objects on a mobile phone

Adapting Frame Rate
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What happens when bandwidth

becomes insufficient?

* TCP ensures data delivery, but hurts latency
* UDP sends fast, sutfering uncontrolled packet loss

* Manual policies (developer heuristics) are sub-optimal
* JetStream [Rabkin et al., NSDI 14| uses manual policy

° (49

it bandwidth is insutficient, switch to sending images at
75% fidelity, then 50% if still not enough”
* Application-specific optimizations don’t generalize

* Adaptation often requires expertise and manual work to
explore multidimensional adaptation for each application



Fidelity vs. Freshness

Fidelity, accuracy (%)
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Fidelity vs. Freshness
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* Applications must be adaptive.

* Adaptation policies must be,

* precise

* automatically generated
* for each application

S—

Pareto-optimal Profile: maximizing
application accuracy while satisfying
bandwidth requirement (avoid congestion)
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AWStream Overview

* Systematic and quantitative adaptation

* New programming abstractions to express adaptation

* Automatic data-driven profiling

* Runtime adaptation balancing freshness and fidelity
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(1) Streaming Operators and APIs

Data Stream —>{ Operator [——> Data Stream

(x1,x2,x3, x4, ... }—>  map() |——> {f(x1), f(x2), f(x3), f(x4), ... }

( )

{x1,x2,x3, x4, ... }—> window(2, f) —> { f(x1, x2), {(x3, x4), ... }

( )

{x1,x2,x3,x4, ... }—/> maybe(k, f) ——> { f(x1, k1), f(x2, k2), f(x3, k3), f(x4, k4)...

.

k is a tunable knob

map (f: 1= 0)
skip (i: Integer)

Normal Operators sliding_window (count: Integer, f: Vec<I> = O)

Stream<I> = Stream<O>
Stream<I> = Stream<I>
Stream<I> = Stream<O>

maybe (knobs: Vec<T>, f: (T, I) = I)

Degradation Operators

Stream<I> = Stream<I>
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(1) maybe APIs in use

let quantized = vec![1l, 2, 3, 4].into stream()
.maybe(vec![2, 4], |k, val| val / k)
.collect();

No
1,2 .
W{a >3>4> }
{1;&3,«.”}-——+{ maybe quantize j\\\\\iji: > {0,1,1,2

k=4 {0,0,0,1, ..

let app = Camera::new( (1920, 1080), 30)
.maybe downsample(vec![ (1600, 900), (1280,
.maybe skip(vec![2, 5])
.map( | frame| pedestrian detect(frame))

.compose();
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(2) Data-driven profiling

let app = Camera::new( (1920, 1080), 30)
.maybe downsample(vec![ (1600, 900), (1280, 720)1])
.maybe skip(vec![2, 5])

.map( | frame| pedestrian detect(frame))

.compose();

Training
Data
downsample skip bandwidth accuracy
Accuracy
(1920, 1080) 0 10.7 1.0 Functi
unction
(1600, 900) 0 8.3 0.88
%
(1280, 720) 0 6.3 0.87
(1920, 1080) 2 9.3 0.90
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(2) Protile: Pareto-optimal Strategy

1
configuration bandwidth  accuracy Q
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(3) Runtime Adaptation

Stream
Source

1| Client (Edge)

data Application

v

Socket

> Analytics

Server
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(3) Runtime Adaptation
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Accuracy

(3) Probing at Runtime
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These configurations are discrete

Without probing, applications can
jump to the next configuration that
demands too much bandwidth.
They end up oscillate between
configurations.

Probing (with dummy traffic)
stabilizes adaptation.

19



Quantization is a parameter exposed

Appllc ath ns from the video encoder (H.264)

Application Knobs Accuracy Dataset
Augmented Resolution F1 Score iPhone video clips
Reality Frame rate (Rijsbergen, 1979] Training: office, 24s
[ Quantization ] Testing: home, 240s
Pedestrian Resolution F1 Score MOT 16 [Milan et al., 2016]
Detection Frame rate Training: MOT 16-04
| Quantization | Testing: MOT 16-03
Log Analysis Head(N) Kendall’s Tau SEC.gov logs
(Top-K, K=50)  Threshold(T) [Abdi, 2007] Training: 4 days

Testing: 16 days
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Applications

Application Knobs Accuracy Dataset
Augmented Resolution F1 Score iPhone video clips
Reality Frame rate [Rijsbergen, 1979] Training: office, 24s
Quantization Testing: home, 240s
Pedestrian Resolution F1 Score MOT 16 [Milan et al., 2016]
Detection Frame rate Training: MOT 16-04
QQuantization Testing: MOT 16-03
Log Analysis Head(N) Kendall’s Tau SEC.gov logs

(Top-K, K=50) | Threshold(T) [Abdi, 2007]

Training: 4 days
Testing: 16 days
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Adaptation in Top-K

Global Top-K

after merge

(f2:5)

(f1: 4)

<f3 4) TOP—I<
Merge p—— (K=1)

File Access Group into Take top-3 Filter with
Logs (file: count) with head(3) threshold 2
G
fl (£2: 2)
£2 (£3: 1) (F1: 4)
2 1) ... (2:2) ... .....
| Wing ' maybe .+ 31D maybe ' (f1: 4)
Log ¥ fndow —P head(N) —P threshold(T) (f2 2)
(1 second) N=3 ; T \
Client (Source) sremmeer Temeeeeees '
Loo —» Window \ ' hrnaglfbe : I E h miylig :ﬂ
°8 (1 second) : §_<?)N> : ‘ re,sr_oz M (f2: 3)

Client (Source)

--------

Server (Analytics)

2



Adaptation in Top-K

{2 is not Top-1 in either client, and could have
been purged with different parameter N or T

(t1: 4)
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Evaluations

* Can AWStream generate accurate profiles across
multiple dimensions?

* Can AWStream runtime improve data freshness and
fidelity when facing insufficient bandwidth?
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Profiles across multiple dimensions

Accuracy (F1 Score)

* Optimal strategy needs multiple dimensions

Pedestrian Detection
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* For the same application, different dimensions have different impact.
PP > p

* FPor different applications, the same dimension has different impact.

25



Profiles are precise

Accuracy (Kendall's 1)
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* The effect of each dimension is
not significantly different.

* The profile offers quantified
effects of adaptation options.
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Runtime Performance Baselines

Baseline

Description

Streaming over TCP

Streaming over UDP

JetStream

[Rabkin et al., 2014]

JetStream++

HLS
[Pantos and May, 2010]

A non-adaptive approach

A non-adaptive approach, representing
RTP/UDP/RTSP video streaming

Manual Policy: “if bandwidth is insufficient, switch
to sending images at 75% fidelity, then 50% if there
still isn’t enough bandwidth. Beyond that point,
reduce the frame rate, but keep the image fidelity.”

Uses adaptation policy generated by AWStream.
JetStream runtime does not probe (hence may
oscillate between policies).

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2010].
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Latency Throughput
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- =+ = JetStream
- = — Streaming over TCP = * = Streaming over UDP
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JetStream++ - = — JetStream
— = — Streaming over TCP = = = Streaming over UDP
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JetStream++ - = — JetStream
- — HLS — = — Streaming over TCP = = = Streaming over UDP
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- = — AWStream
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Runtime Performance Summary
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Conclusion

* The emerging wide-area streaming analytics
* They are becoming pervasive with more IoT applications

* They must address scarce and varying WAN bandwidth
* We present AWStream.

* A systematic and quantitative approach towards adaptation
* Novel APIs, automatic profiling, and runtime adaptation

* For more questions,
* Contact: Ben Zhang, benzh(@cs.berkeley.edu
e Slides: https://awstream.github.io/talk/talk.pdf
* Repository: https://github.com/awstream
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