
AWStream: Adaptive Wide-Area
Streaming Analytics

Ben Zhang, Xin Jin, Sylvia Ratnasamy
John Wawrzynek, Edward A. Lee

Presented by Radhika Mittal (not a co-author)

1

Ben Zhang
PowerPoint File is available at:
https://awstream.github.io/talk/talk.pptx�

Wide-Area Streaming Analytics

Demand
Huge data generated at
the edge

Resource
Scarce and varying WAN
bandwidth

2

Demand: Huge Data at the Edge

• Machine logs, 25 TB daily at Facebook (2009)
• Electrical grid monitoring, 1.4 million data points per second

[Andersen and Culler, FAST ‘16]
• Video surveillance, 3 mbps per camera [Amerasinghe, 2009]

• . . . Dropcam, a WiFi video-streaming camera and associated
cloud backend service for storing and watching the resulting
video. Dropcam has the fewest clients (2,940) Yet, each
client uses roughly 2.8 GB a week and uploads nearly 19 times
more than they download, implying that Dropcam users do
not often watch what they record. [Biswas, SIGCOMM ‘15]

3

Resource: Scarce and Varying
WAN Bandwidth

●
●

●
● ● ●

●

●

● ●

● ●

●
●

●
●

●
●

● ●
● ●

● ● ●

● ●

●

●
● ● ●

● ● ● ●
●

●

● ●
●

●
●

●

●
●

●

●

0
25
50
75
100

06:00 12:00 18:00 00:00 06:00
Time

Ba
nd
w
id
th

(m
bp
s)

Bandwidth variations throughout the day between Amazon
EC2 sites. Similar scarcity and variation for wireless
networks, broadband access networks and cellular networks.

Less than 25%

4

What happens when bandwidth
becomes insufficient?
• TCP ensures data delivery, but hurts latency
• UDP sends fast, suffering uncontrolled packet loss
• Manual policies (developer heuristics) are sub-optimal
• JetStream [Rabkin et al., NSDI 14] uses manual policy
• “if bandwidth is insufficient, switch to sending images at

75% fidelity, then 50% if still not enough”

• Application-specific optimizations don’t generalize
• (more on the next slide)

5

Application-specific optimizations
don’t generalize

t=0s, small target in far-field views

t=1s, small difference

Positive if intersection over
union (IOU) larger than 0.5.

IOU=0.2 IOU=0.5 IOU=0.8

For a surveillance application that
detects pedestrians on a busy street

6

Application-specific optimizations
don’t generalize

t=0s, small target in far-field views

t=1s, small difference

100

40
21 13 9

100 92 90 87 84

0

50

100

30 10 5 3 2

Adapting Frame Rate

Bandwidth	(normalized) Acccuracy

100
79

54
29 17

100
87 84

71

11

0

50

100

1080p 900p 720p 540p 360p

Adapting Resolution

Bandwidth Acccuracy

For a surveillance application that
detects pedestrians on a busy street

7

Application-specific optimizations
don’t generalize

t=0s, nearby and large targets

t=1s, large difference due to camera movement

100

65
46 34 27

100

64

32
18 10

0

50

100

30 10 5 3 2

Adapting Frame Rate

Bandwidth	(normalized) Acccuracy

100

69
49

33 22

100
87 97 93 87

0

50

100

1080p 900p 720p 540p 360p

Adapting Resolution

Bandwidth	(normalized) Acccuracy

For an application that detects
objects on a mobile phone

8

What happens when bandwidth
becomes insufficient?
• TCP ensures data delivery, but hurts latency
• UDP sends fast, suffering uncontrolled packet loss
• Manual policies (developer heuristics) are sub-optimal
• JetStream [Rabkin et al., NSDI 14] uses manual policy
• “if bandwidth is insufficient, switch to sending images at

75% fidelity, then 50% if still not enough”

• Application-specific optimizations don’t generalize
• Adaptation often requires expertise and manual work to

explore multidimensional adaptation for each application

9

Fidelity vs. Freshness

Streaming
over UDP

Streaming
over TCP Manual

Policies App−specific

Better

0.0

0.5

1.0

100 10 1 0.1
Freshness, latency reversed (seconds)

Fi
de

lit
y,

ac
cu

ra
cy

 (%
)

10

Fidelity vs. Freshness

Streaming
over UDP

Streaming
over TCP AWStreamManual

Policies App−specific

Better

0.0

0.5

1.0

100 10 1 0.1
Freshness, latency reversed (seconds)

Fi
de

lit
y,

ac
cu

ra
cy

 (%
)

• Applications must be adaptive.
• Adaptation policies must be,

• precise
• automatically generated
• for each application

Pareto-optimal Profile: maximizing
application accuracy while satisfying
bandwidth requirement (avoid congestion)

11

AWStream Overview

• Systematic and quantitative adaptation
• New programming abstractions to express adaptation
• Automatic data-driven profiling
• Runtime adaptation balancing freshness and fidelity

Develop

Application

maybe APIs

Profiling

Offline
Profiling

Online
Profiling

Training
Data

Accuracy
Function

Runtime

Runtime
Adaptation

Resource
Allocation

Online
Data

var bw acc

1920 10.7 100
1280 8.3 91

Profile

12

(1) Streaming Operators and APIs
OperatorData Stream Data Stream

map(f){x1, x2, x3, x4, … } { f(x1), f(x2), f(x3), f(x4), … }

window(2, f){x1, x2, x3, x4, … } { f(x1, x2), f(x3, x4), … }

maybe(k, f){x1, x2, x3, x4, … } { f(x1, k1), f(x2, k2), f(x3, k3), f(x4, k4)… }
AWStream: Adaptive Wide-Area Streaming Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Normal Operators

map (f: I) O) Stream<I>) Stream<O>
skip (i: Integer) Stream<I>) Stream<I>

sliding_window (count: Integer, f: Vec<I>) O) Stream<I>) Stream<O>
... ...

Degradation Operators

maybe (knobs: Vec<T>, f: (T, I)) I) Stream<I>) Stream<I>
maybe_skip (knobs: Vec<Integer>) Stream<I>) Stream<I>

maybe_head (knobs: Vec<Integer>) Stream<Vec<I>>) Stream<Vec<I>>
maybe_downsample (knobs: Vec<(Integer, Integer)>) Stream<Image>) Stream<Image>

... ...

Table 1. Stream processing operators in AWStream. represents a list of elements with type .

The snippet creates a stream of integers, chains a degra-
dation operation, and collects the execution result. In this
example, the knob is [2, 4] and the degradation function per-
forms a wrapping (modular) division where the divisor is the
chosen knob. The knob value modifies the quantization level,
affecting the output: [1, 2, 3, 4] (no degradation), [0, 1, 1, 2]
(k=2), or [0, 0, 0, 1] (k=4). If the stream is then encoded—for
example, run-length encoding as in JPEG [92]—for transmis-
sion, the data size will depend on the level of degradation.

Based on the primitive, one can implement addi-
tional degradation operators for common data types. For in-
stance, will optionally take the top values of a
list; can resize the image to a configured
resolution. AWStream provides a number of such operations
as a library to simplify application development (Table 1).

With our API, the example mentioned in §2.3 can now be
implemented as follows:

This snippet first instantiates a source, which pro-
duces with 1920x1080 resolution and 30
FPS. Two degradation operations follow the source: one that
downsamples the image to 1600x900 or 1280x720 resolu-
tion, and the other that skips every 2 or 5 frames, resulting in
30/(2+1)=10 FPS or 30/(5+1)= 6 FPS. This example then dis-
plays degraded images. In practice, operators for further pro-
cessing, such as encoding and transmission, can be chained.

3.2 Automatic Profiling

After developers use operators to specify potential
degradation operations, AWStream automatically builds an
accurate profile. The profile captures the relationship between

Symbol Description

n number of degradation operations
ki the i-th degradation knob

c = [k1, k2, ...kn] one specific configuration
C the set of all configurations

B (c) bandwidth requirement for c
A(c) accuracy measure for c
P Pareto-optimal set

ci , ci+1, cmax current/next/maximal configuration at runtime
R network delivery rate (estimated bandwidth)

QE, QC messages when is empty or congested
RC message when detects congestion

ACProbe message when requests probing
SProbeDone message when finishes probing

Table 2. Notations used in this paper.

application accuracy and bandwidth consumption under dif-
ferent combinations of data degradation operations. We de-
scribe the formalism, followed by techniques that efficiently
perform offline and online profiling.
Profiling formalism. Suppose a stream processing appli-
cation has n operators. Each operator introduces a
knob ki . The combination of all knobs forms a configuration
c = [k1,k2, ...kn]. The set of all possible configurations C is
the space that the profiling explores. For each configuration
c, there are two mappings that are of particular interest: a
mapping from c to its bandwidth consumption B (c) and its
accuracy measure A(c). Table 2 summarizes these symbols.

The profiling looks for Pareto-optimal configurations; that
is, for any configuration c in the Pareto-optimal set P, there
is no alternative configuration c 0 that requires less bandwidth
and offers a higher accuracy. Formally, P is defined as follows:

P = {c 2 C : {c 0 2 C : B (c 0) < B (c),A(c 0) > A(c)} = ?} (1)

We show examples of knobs, configurations, and accuracy
functions when we present applications in §4 and visualize
the profile of sample applications in Figure 8.
Offline Profiling. We first use an offline process to build
a bootstrap profile (or default profile). Because AWStream
allows arbitrary functions as the degradation functions, it does

AWStream: Adaptive Wide-Area Streaming Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Normal Operators

map (f: I) O) Stream<I>) Stream<O>
skip (i: Integer) Stream<I>) Stream<I>

sliding_window (count: Integer, f: Vec<I>) O) Stream<I>) Stream<O>
... ...

Degradation Operators

maybe (knobs: Vec<T>, f: (T, I)) I) Stream<I>) Stream<I>
maybe_skip (knobs: Vec<Integer>) Stream<I>) Stream<I>

maybe_head (knobs: Vec<Integer>) Stream<Vec<I>>) Stream<Vec<I>>
maybe_downsample (knobs: Vec<(Integer, Integer)>) Stream<Image>) Stream<Image>

... ...

Table 1. Stream processing operators in AWStream. represents a list of elements with type .

The snippet creates a stream of integers, chains a degra-
dation operation, and collects the execution result. In this
example, the knob is [2, 4] and the degradation function per-
forms a wrapping (modular) division where the divisor is the
chosen knob. The knob value modifies the quantization level,
affecting the output: [1, 2, 3, 4] (no degradation), [0, 1, 1, 2]
(k=2), or [0, 0, 0, 1] (k=4). If the stream is then encoded—for
example, run-length encoding as in JPEG [92]—for transmis-
sion, the data size will depend on the level of degradation.

Based on the primitive, one can implement addi-
tional degradation operators for common data types. For in-
stance, will optionally take the top values of a
list; can resize the image to a configured
resolution. AWStream provides a number of such operations
as a library to simplify application development (Table 1).

With our API, the example mentioned in §2.3 can now be
implemented as follows:

This snippet first instantiates a source, which pro-
duces with 1920x1080 resolution and 30
FPS. Two degradation operations follow the source: one that
downsamples the image to 1600x900 or 1280x720 resolu-
tion, and the other that skips every 2 or 5 frames, resulting in
30/(2+1)=10 FPS or 30/(5+1)= 6 FPS. This example then dis-
plays degraded images. In practice, operators for further pro-
cessing, such as encoding and transmission, can be chained.

3.2 Automatic Profiling

After developers use operators to specify potential
degradation operations, AWStream automatically builds an
accurate profile. The profile captures the relationship between

Symbol Description

n number of degradation operations
ki the i-th degradation knob

c = [k1, k2, ...kn] one specific configuration
C the set of all configurations

B (c) bandwidth requirement for c
A(c) accuracy measure for c
P Pareto-optimal set

ci , ci+1, cmax current/next/maximal configuration at runtime
R network delivery rate (estimated bandwidth)

QE, QC messages when is empty or congested
RC message when detects congestion

ACProbe message when requests probing
SProbeDone message when finishes probing

Table 2. Notations used in this paper.

application accuracy and bandwidth consumption under dif-
ferent combinations of data degradation operations. We de-
scribe the formalism, followed by techniques that efficiently
perform offline and online profiling.
Profiling formalism. Suppose a stream processing appli-
cation has n operators. Each operator introduces a
knob ki . The combination of all knobs forms a configuration
c = [k1,k2, ...kn]. The set of all possible configurations C is
the space that the profiling explores. For each configuration
c, there are two mappings that are of particular interest: a
mapping from c to its bandwidth consumption B (c) and its
accuracy measure A(c). Table 2 summarizes these symbols.

The profiling looks for Pareto-optimal configurations; that
is, for any configuration c in the Pareto-optimal set P, there
is no alternative configuration c 0 that requires less bandwidth
and offers a higher accuracy. Formally, P is defined as follows:

P = {c 2 C : {c 0 2 C : B (c 0) < B (c),A(c 0) > A(c)} = ?} (1)

We show examples of knobs, configurations, and accuracy
functions when we present applications in §4 and visualize
the profile of sample applications in Figure 8.
Offline Profiling. We first use an offline process to build
a bootstrap profile (or default profile). Because AWStream
allows arbitrary functions as the degradation functions, it does

k is a tunable knob

13

let app = Camera::new((1920, 1080), 30)

.maybe_downsample(vec![(1600, 900), (1280, 720)])

.maybe_skip(vec![2, 5])

.map(|frame| pedestrian_detect(frame))

.compose();

(1) maybe APIs in use
let quantized = vec![1, 2, 3, 4].into_stream()

.maybe(vec![2, 4], |k, val| val / k)

.collect();

maybe quantize{1, 2, 3, 4, …}

{1, 2, 3, 4, …}

{0, 1, 1, 2, …}

{0, 0, 0, 1, …}

k = 2

k = 4

No
Adaptation

14

(2) Data-driven profiling
let app = Camera::new((1920, 1080), 30)

.maybe_downsample(vec![(1600, 900), (1280, 720)])

.maybe_skip(vec![2, 5])

.map(|frame| pedestrian_detect(frame))

.compose();

downsample skip bandwidth accuracy

(1920, 1080) 0 10.7 1.0

(1600, 900) 0 8.3 0.88

(1280, 720) 0 6.3 0.87

(1920, 1080) 2 9.3 0.90

… … …. …

Training
Data

Accuracy
Function

15

(2) Profile: Pareto-optimal Strategy

Bandwidth (normalized)
0 1

0

1

A
cc

ur
ac

y

configuration bandwidth accuracy

c1 10.7 1.0

c2 8.3 0.88

c3 6.3 0.87

c4 9.3 0.90

… …. …

AWStream: Adaptive Wide-Area Streaming Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Normal Operators

map (f: I) O) Stream<I>) Stream<O>
skip (i: Integer) Stream<I>) Stream<I>

sliding_window (count: Integer, f: Vec<I>) O) Stream<I>) Stream<O>
... ...

Degradation Operators

maybe (knobs: Vec<T>, f: (T, I)) I) Stream<I>) Stream<I>
maybe_skip (knobs: Vec<Integer>) Stream<I>) Stream<I>

maybe_head (knobs: Vec<Integer>) Stream<Vec<I>>) Stream<Vec<I>>
maybe_downsample (knobs: Vec<(Integer, Integer)>) Stream<Image>) Stream<Image>

... ...

Table 1. Stream processing operators in AWStream. represents a list of elements with type .

The snippet creates a stream of integers, chains a degra-
dation operation, and collects the execution result. In this
example, the knob is [2, 4] and the degradation function per-
forms a wrapping (modular) division where the divisor is the
chosen knob. The knob value modifies the quantization level,
affecting the output: [1, 2, 3, 4] (no degradation), [0, 1, 1, 2]
(k=2), or [0, 0, 0, 1] (k=4). If the stream is then encoded—for
example, run-length encoding as in JPEG [92]—for transmis-
sion, the data size will depend on the level of degradation.

Based on the primitive, one can implement addi-
tional degradation operators for common data types. For in-
stance, will optionally take the top values of a
list; can resize the image to a configured
resolution. AWStream provides a number of such operations
as a library to simplify application development (Table 1).

With our API, the example mentioned in §2.3 can now be
implemented as follows:

This snippet first instantiates a source, which pro-
duces with 1920x1080 resolution and 30
FPS. Two degradation operations follow the source: one that
downsamples the image to 1600x900 or 1280x720 resolu-
tion, and the other that skips every 2 or 5 frames, resulting in
30/(2+1)=10 FPS or 30/(5+1)= 6 FPS. This example then dis-
plays degraded images. In practice, operators for further pro-
cessing, such as encoding and transmission, can be chained.

3.2 Automatic Profiling

After developers use operators to specify potential
degradation operations, AWStream automatically builds an
accurate profile. The profile captures the relationship between

Symbol Description

n number of degradation operations
ki the i-th degradation knob

c = [k1, k2, ...kn] one specific configuration
C the set of all configurations

B (c) bandwidth requirement for c
A(c) accuracy measure for c
P Pareto-optimal set

ci , ci+1, cmax current/next/maximal configuration at runtime
R network delivery rate (estimated bandwidth)

QE, QC messages when is empty or congested
RC message when detects congestion

ACProbe message when requests probing
SProbeDone message when finishes probing

Table 2. Notations used in this paper.

application accuracy and bandwidth consumption under dif-
ferent combinations of data degradation operations. We de-
scribe the formalism, followed by techniques that efficiently
perform offline and online profiling.
Profiling formalism. Suppose a stream processing appli-
cation has n operators. Each operator introduces a
knob ki . The combination of all knobs forms a configuration
c = [k1,k2, ...kn]. The set of all possible configurations C is
the space that the profiling explores. For each configuration
c, there are two mappings that are of particular interest: a
mapping from c to its bandwidth consumption B (c) and its
accuracy measure A(c). Table 2 summarizes these symbols.

The profiling looks for Pareto-optimal configurations; that
is, for any configuration c in the Pareto-optimal set P, there
is no alternative configuration c 0 that requires less bandwidth
and offers a higher accuracy. Formally, P is defined as follows:

P = {c 2 C : {c 0 2 C : B (c 0) < B (c),A(c 0) > A(c)} = ?} (1)

We show examples of knobs, configurations, and accuracy
functions when we present applications in §4 and visualize
the profile of sample applications in Figure 8.
Offline Profiling. We first use an offline process to build
a bootstrap profile (or default profile). Because AWStream
allows arbitrary functions as the degradation functions, it does

the set of better configuration c’

16

(3) Runtime Adaptation

Stream
Source

AnalyticsSocket

Applicationdata

ServerClient (Edge)

17

(3) Runtime Adaptation

Stream
Source

Analyticsmaybe

Adaptation
Controller (AC)

Socket

Queue

Receiver

Application

System

data

control

ServerClient (Edge)

Startup Degrade Steady Probe

Additive
Increase

Multiplicative
Decrease 18

(3) Probing at Runtime

Startup Degrade Steady Probe

Bandwidth (normalized)
0 1

0

1

A
cc

ur
ac

y

• These configurations are discrete
• Without probing, applications can

jump to the next configuration that
demands too much bandwidth.
They end up oscillate between
configurations.

• Probing (with dummy traffic)
stabilizes adaptation.

Available
Bandwidth

Oscillate

19

Application Knobs Accuracy Dataset

Augmented
Reality

Resolution
Frame rate
Quantization

F1 Score
[Rijsbergen, 1979]

iPhone video clips
Training: office, 24s
Testing: home, 240s

Pedestrian
Detection

Resolution
Frame rate
Quantization

F1 Score MOT 16 [Milan et al., 2016]
Training: MOT 16-04
Testing: MOT 16-03

Log Analysis
(Top-K, K=50)

Head(N)
Threshold(T)

Kendall’s Tau
[Abdi, 2007]

SEC.gov logs
Training: 4 days
Testing: 16 days

Applications

12927
1652044
1586704
886982

1315255
923796

1086467
824142
897070

1288776
1429415
100591
100517

1004980
943003
19617

880771
1067701
1357615
1318568
1107694

33488
818479

1064863
71691

1608233
1022652
893739

1409970
1108524
1623613
312070

1600422
828944
908255
92416

1144519
1575515
216228
922621
887596
939767

1619954
1490892
926326

1486957
859598
800240

1421182
1397911

0 1000 2000 3000 4000
Access Times

Application Knobs Accuracy Dataset

Augmented
Reality

Resolution
Frame rate
Quantization

F1 Score
[Rijsbergen, 1979]

iPhone video clips
Training: office, 24s
Testing: home, 240s

Pedestrian
Detection

Resolution
Frame rate
Quantization

F1 Score MOT 16 [Milan et al., 2016]
Training: MOT 16-04
Testing: MOT 16-03

Log Analysis
(Top-K, K=50)

Head(N)
Threshold(T)

Kendall’s Tau
[Abdi, 2007]

SEC.gov logs
Training: 4 days
Testing: 16 days

Application Knobs Accuracy Dataset

Augmented
Reality

Resolution
Frame rate
Quantization

F1 Score
[Rijsbergen, 1979]

iPhone video clips
Training: office, 24s
Testing: home, 240s

Pedestrian
Detection

Resolution
Frame rate
Quantization

F1 Score MOT 16 [Milan et al., 2016]
Training: MOT 16-04
Testing: MOT 16-03

Log Analysis
(Top-K, K=50)

Head(N)
Threshold(T)

Kendall’s Tau
[Abdi, 2007]

SEC.gov logs
Training: 4 days
Testing: 16 days

Application Knobs Accuracy Dataset

Augmented
Reality

Resolution
Frame rate
Quantization

F1 Score
[Rijsbergen, 1979]

iPhone video clips
Training: office, 24s
Testing: home, 240s

Pedestrian
Detection

Resolution
Frame rate
Quantization

F1 Score MOT 16 [Milan et al., 2016]
Training: MOT 16-04
Testing: MOT 16-03

Log Analysis
(Top-K, K=50)

Head(N)
Threshold(T)

Kendall’s Tau
[Abdi, 2007]

SEC.gov logs
Training: 4 days
Testing: 16 days

Quantization is a parameter exposed
from the video encoder (H.264)

20

12927
1652044
1586704
886982

1315255
923796

1086467
824142
897070

1288776
1429415
100591
100517

1004980
943003
19617

880771
1067701
1357615
1318568
1107694

33488
818479

1064863
71691

1608233
1022652
893739

1409970
1108524
1623613
312070

1600422
828944
908255
92416

1144519
1575515
216228
922621
887596
939767

1619954
1490892
926326

1486957
859598
800240

1421182
1397911

0 1000 2000 3000 4000
Access Times

12927
1652044
1586704
886982

1315255
923796

1086467
824142
897070

1288776
1429415
100591
100517

1004980
943003
19617

880771
1067701
1357615
1318568
1107694

33488
818479

1064863
71691

1608233
1022652
893739

1409970
1108524
1623613
312070

1600422
828944
908255
92416

1144519
1575515
216228
922621
887596
939767

1619954
1490892
926326

1486957
859598
800240

1421182
1397911

0 1000 2000 3000 4000
Access Times

Application Knobs Accuracy Dataset

Augmented
Reality

Resolution
Frame rate
Quantization

F1 Score
[Rijsbergen, 1979]

iPhone video clips
Training: office, 24s
Testing: home, 240s

Pedestrian
Detection

Resolution
Frame rate
Quantization

F1 Score MOT 16 [Milan et al., 2016]
Training: MOT 16-04
Testing: MOT 16-03

Log Analysis
(Top-K, K=50)

Head(N)
Threshold(T)

Kendall’s Tau
[Abdi, 2007]

SEC.gov logs
Training: 4 days
Testing: 16 days

Applications

12927
1652044
1586704
886982

1315255
923796

1086467
824142
897070

1288776
1429415
100591
100517

1004980
943003
19617

880771
1067701
1357615
1318568
1107694

33488
818479

1064863
71691

1608233
1022652
893739

1409970
1108524
1623613
312070

1600422
828944
908255
92416

1144519
1575515
216228
922621
887596
939767

1619954
1490892
926326

1486957
859598
800240

1421182
1397911

0 1000 2000 3000 4000
Access Times

Application Knobs Accuracy Dataset

Augmented
Reality

Resolution
Frame rate
Quantization

F1 Score
[Rijsbergen, 1979]

iPhone video clips
Training: office, 24s
Testing: home, 240s

Pedestrian
Detection

Resolution
Frame rate
Quantization

F1 Score MOT 16 [Milan et al., 2016]
Training: MOT 16-04
Testing: MOT 16-03

Log Analysis
(Top-K, K=50)

Head(N)
Threshold(T)

Kendall’s Tau
[Abdi, 2007]

SEC.gov logs
Training: 4 days
Testing: 16 days

Application Knobs Accuracy Dataset

Augmented
Reality

Resolution
Frame rate
Quantization

F1 Score
[Rijsbergen, 1979]

iPhone video clips
Training: office, 24s
Testing: home, 240s

Pedestrian
Detection

Resolution
Frame rate
Quantization

F1 Score MOT 16 [Milan et al., 2016]
Training: MOT 16-04
Testing: MOT 16-03

Log Analysis
(Top-K, K=50)

Head(N)
Threshold(T)

Kendall’s Tau
[Abdi, 2007]

SEC.gov logs
Training: 4 days
Testing: 16 days

Application Knobs Accuracy Dataset

Augmented
Reality

Resolution
Frame rate
Quantization

F1 Score
[Rijsbergen, 1979]

iPhone video clips
Training: office, 24s
Testing: home, 240s

Pedestrian
Detection

Resolution
Frame rate
Quantization

F1 Score MOT 16 [Milan et al., 2016]
Training: MOT 16-04
Testing: MOT 16-03

Log Analysis
(Top-K, K=50)

Head(N)
Threshold(T)

Kendall’s Tau
[Abdi, 2007]

SEC.gov logs
Training: 4 days
Testing: 16 days

21

12927
1652044
1586704
886982

1315255
923796

1086467
824142
897070

1288776
1429415
100591
100517

1004980
943003
19617

880771
1067701
1357615
1318568
1107694

33488
818479

1064863
71691

1608233
1022652
893739

1409970
1108524
1623613
312070

1600422
828944
908255
92416

1144519
1575515
216228
922621
887596
939767

1619954
1490892
926326

1486957
859598
800240

1421182
1397911

0 1000 2000 3000 4000
Access Times

12927
1652044
1586704
886982

1315255
923796

1086467
824142
897070

1288776
1429415
100591
100517

1004980
943003
19617

880771
1067701
1357615
1318568
1107694

33488
818479

1064863
71691

1608233
1022652
893739

1409970
1108524
1623613
312070

1600422
828944
908255
92416

1144519
1575515
216228
922621
887596
939767

1619954
1490892
926326

1486957
859598
800240

1421182
1397911

0 1000 2000 3000 4000
Access Times

Adaptation in Top-K

Log Window
(1 second)

maybe
head(N)

N=3

maybe
threshold(T)

T=2

Merge Top-K
(K=1)

f1
f2
f2
…

(f1: 4)
(f2: 2)
(f3: 1)
(f4: 1)

…

(f1: 4)
(f2: 2)
(f3: 1) (f1: 4)

(f2: 2) (f2: 5)
(f1: 4)
(f3: 4)

Log Window
(1 second)

maybe
head(N)

N=3

maybe
threshold(T)

T=2

(f3: 4)
(f2: 3)

f2

Client (Source)

Server (Analytics)

Client (Source)

File Access
Logs

Group into
(file: count)

Take top-3
with head(3)

Filter with
threshold 2

Global Top-K
after merge

22

Adaptation in Top-K

Log Window
(1 second)

maybe
head(N)

N=3

maybe
threshold(T)

T=2

Merge Top-K
(K=1)

f1
f2
f2
…

(f1: 4)
(f2: 2)
(f3: 1)
(f4: 1)

…

(f1: 4)
(f2: 2)
(f3: 1) (f1: 4)

(f2: 2) (f2: 5)
(f1: 4)
(f3: 4)

Log Window
(1 second)

maybe
head(N)

N=3

maybe
threshold(T)

T=2

(f3: 4)
(f2: 3)

f2

Client (Source)

Server (Analytics)

Client (Source)

23

f2 is not Top-1 in either client, and could have
been purged with different parameter N or T

Evaluations

• Can AWStream generate accurate profiles across
multiple dimensions?
• Can AWStream profile efficiently and support online

profiling?
• Can AWStream runtime improve data freshness and

fidelity when facing insufficient bandwidth?
• Can we use the profiles to guide bandwidth

allocations among multiple applications?

24

Profiles across multiple dimensions

●

●

●

●
● ●

●
●●●●

●● ●●●●
●●

● ●●● ●
●

●

0.00
0.25
0.50
0.75
1.00

1 100
Bandwidth (Mbps)

Ac
cu

ra
cy

 (F
1

Sc
or

e)

● Pareto boundary
tune framerate

tune quantizer
tune resolution

●
●

●
●

●
●
● ●●●

●
●

● ● ●●
●●

● ● ● ● ● ● ●
●

0.00
0.25
0.50
0.75
1.00

1 100
Bandwidth (Mbps)

Ac
cu

ra
cy

 (F
1

Sc
or

e)

● Pareto boundary
tune framerate

tune quantizer
tune resolution

Pedestrian Detection Augmented Reality

• Optimal strategy needs multiple dimensions
• For the same application, different dimensions have different impact.
• For different applications, the same dimension has different impact.

25

Profiles are precise

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●
●

●●●●●●●●

●

●●●

●●●
●●●
●
●
●●

0.4

0.6

0.8

1.0

10 100 1000
Bandwidth (Kbps)

Ac
cu

ra
cy

 (K
en

da
ll¢s

 t
)

● Pareto boundary
tune N

tune T

• The effect of each dimension is
not significantly different.
• The profile offers quantified

effects of adaptation options.

26

Runtime Performance Baselines
Baseline Description

Streaming over TCP A non-adaptive approach

Streaming over UDP A non-adaptive approach, representing
RTP/UDP/RTSP video streaming

JetStream
[Rabkin et al., 2014]

Manual Policy: “if bandwidth is insufficient, switch
to sending images at 75% fidelity, then 50% if there
still isn’t enough bandwidth. Beyond that point,
reduce the frame rate, but keep the image fidelity.”

JetStream++ Uses adaptation policy generated by AWStream.
JetStream runtime does not probe (hence may
oscillate between policies).

HLS
[Pantos and May, 2016]

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2016].

Baseline Description

Streaming over TCP A non-adaptive approach

Streaming over UDP A non-adaptive approach, representing
RTP/UDP/RTSP video streaming

JetStream
[Rabkin et al., 2014]

Manual Policy: “if bandwidth is insufficient, switch
to sending images at 75% fidelity, then 50% if there
still isn’t enough bandwidth. Beyond that point,
reduce the frame rate, but keep the image fidelity.”

JetStream++ Uses adaptation policy generated by AWStream.
JetStream runtime does not probe (hence may
oscillate between policies).

HLS
[Pantos and May, 2016]

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2016].

Baseline Description

Streaming over TCP A non-adaptive approach

Streaming over UDP A non-adaptive approach, representing
RTP/UDP/RTSP video streaming

JetStream
[Rabkin et al., 2014]

Manual Policy: “if bandwidth is insufficient, switch
to sending images at 75% fidelity, then 50% if there
still isn’t enough bandwidth. Beyond that point,
reduce the frame rate, but keep the image fidelity.”

JetStream++ Uses adaptation policy generated by AWStream.
JetStream runtime does not probe (hence may
oscillate between policies).

HLS
[Pantos and May, 2016]

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2016].

Baseline Description

Streaming over TCP A non-adaptive approach

Streaming over UDP A non-adaptive approach, representing
RTP/UDP/RTSP video streaming

JetStream
[Rabkin et al., 2014]

Manual Policy: “if bandwidth is insufficient, switch
to sending images at 75% fidelity, then 50% if there
still isn’t enough bandwidth. Beyond that point,
reduce the frame rate, but keep the image fidelity.”

JetStream++ Uses adaptation policy generated by AWStream.
JetStream runtime does not probe (hence may
oscillate between policies).

HLS
[Pantos and May, 2016]

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2016].

Baseline Description

Streaming over TCP A non-adaptive approach

Streaming over UDP A non-adaptive approach, representing
RTP/UDP/RTSP video streaming

JetStream
[Rabkin et al., 2014]

Manual Policy: “if bandwidth is insufficient, switch
to sending images at 75% fidelity, then 50% if there
still isn’t enough bandwidth. Beyond that point,
reduce the frame rate, but keep the image fidelity.”

JetStream++ Uses adaptation policy generated by AWStream.
JetStream runtime does not probe (hence may
oscillate between policies).

HLS
[Pantos and May, 2016]

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2016].

Baseline Description

Streaming over TCP A non-adaptive approach

Streaming over UDP A non-adaptive approach, representing
RTP/UDP/RTSP video streaming

JetStream
[Rabkin et al., 2014]

Manual Policy: “if bandwidth is insufficient, switch
to sending images at 75% fidelity, then 50% if there
still isn’t enough bandwidth. Beyond that point,
reduce the frame rate, but keep the image fidelity.”

JetStream++ Uses adaptation policy generated by AWStream.
JetStream runtime does not probe (hence may
oscillate between policies).

HLS
[Pantos and May, 2016]

HTTP Live Streaming represents popular adaptive
video streaming techniques; used for Periscope video
stream [Wang et al., 2016].

27

●AWStream JetStream++ JetStream
HLS Streaming over TCP Streaming over UDP

 0.0
 5.0
10.0
15.0
20.0
25.0

0 200 400 600

Th
ro

ug
hp

ut
(m

bp
s)

0.1
1.0

10.0
100

0 200 400 600

La
te

nc
y

(s
ec

on
ds

)

0.00
0.25
0.50
0.75
1.00

0 200 400 600
Time (seconds)

Ac
cu

ra
cy

(F
1

Sc
or

e)

 0.0
 5.0
10.0
15.0
20.0
25.0

0 200 400 600

Th
ro

ug
hp

ut
(m

bp
s)

0.1
1.0

10.0
100

0 200 400 600

La
te

nc
y

(s
ec

on
ds

)

0.00
0.25
0.50
0.75
1.00

0 200 400 600
Time (seconds)

Ac
cu

ra
cy

(F
1

Sc
or

e)

Traffic
shaping

More Traffic shaping

Remove shaping

TCP hurts latency

UDP hurts accuracy

TCP catching up

28

●AWStream JetStream++ JetStream
HLS Streaming over TCP Streaming over UDP

 0.0
 5.0
10.0
15.0
20.0
25.0

0 200 400 600

Th
ro

ug
hp

ut
(m

bp
s)

0.1
1.0

10.0
100

0 200 400 600

La
te

nc
y

(s
ec

on
ds

)

0.00
0.25
0.50
0.75
1.00

0 200 400 600
Time (seconds)

Ac
cu

ra
cy

(F
1

Sc
or

e)

Manual policy does not
have enough adaptation

29

●AWStream JetStream++ JetStream
HLS Streaming over TCP Streaming over UDP

●

●●●●●●
●

●
●●

●

●

●●●●
●●

●

●
●●

●

●

●●●●●●
●

●
●●

●●●●●●

●

●●
●●

●●●●
●
●●

●
●●

●
●●●

●●

●
●●●●

●
●●

●

●●●●●●●
●●●●●

●

●
●●●●●●●

●
●●●●

●●●●●●●
●●

●●●
●●●●●●●

●●●
●●

●

 0.0
 5.0
10.0
15.0
20.0
25.0

0 200 400 600

Th
ro

ug
hp

ut
(m

bp
s)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●

●

●
●

●
●●

●
●
●

●
●●●

●●

●

●
●
●●

●

●
●
●
●
●
●
●●

●

●
●●

●●
●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
0.1
1.0

10.0
100

0 200 400 600

La
te

nc
y

(s
ec

on
ds

)

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●●
●
●

●

●

●
●

●
●●

●●●
●

●
●

●

●

●●
●

●
●●

●

●
●●

●
●
●

●

●
●
●●●

●
●

●

●
●
●
●

●

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●

0.00
0.25
0.50
0.75
1.00

0 200 400 600
Time (seconds)

Ac
cu

ra
cy

(F
1

Sc
or

e)

Bounded Latency

Policy Oscillation

30

●

●●●●●●
●

●
●●

●

●

●●●●
●●

●

●
●●

●

●

●●●●●●
●

●
●●

●●●●●●

●

●●
●●

●●●●
●
●●

●
●●

●
●●●

●●

●
●●●●

●
●●

●

●●●●●●●
●●●●●

●

●
●●●●●●●

●
●●●●

●●●●●●●
●●

●●●
●●●●●●●

●●●
●●

●

 0.0
 5.0
10.0
15.0
20.0
25.0

0 200 400 600

Th
ro

ug
hp

ut
(m

bp
s)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●

●

●
●

●
●●

●
●
●

●
●●●

●●

●

●
●
●●

●

●
●
●
●
●
●
●●

●

●
●●

●●
●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
0.1
1.0

10.0
100

0 200 400 600

La
te

nc
y

(s
ec

on
ds

)

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●●
●
●

●

●

●
●

●
●●

●●●
●

●
●

●

●

●●
●

●
●●

●

●
●●

●
●
●

●

●
●
●●●

●
●

●

●
●
●
●

●

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●

0.00
0.25
0.50
0.75
1.00

0 200 400 600
Time (seconds)

Ac
cu

ra
cy

(F
1

Sc
or

e)

Latency due to
buffering

●AWStream JetStream++ JetStream
HLS Streaming over TCP Streaming over UDP

31

●AWStream JetStream++ JetStream
HLS Streaming over TCP Streaming over UDP

●

●●●●●●
●

●
●●

●

●

●●●●
●●

●

●
●●

●

●

●●●●●●
●

●
●●

●●●●●●

●

●●
●●

●●●●
●
●●

●
●●

●
●●●

●●

●
●●●●

●
●●

●

●●●●●●●
●●●●●

●

●
●●●●●●●

●
●●●●

●●●●●●●
●●

●●●
●●●●●●●

●●●
●●

●

 0.0
 5.0
10.0
15.0
20.0
25.0

0 200 400 600

Th
ro

ug
hp

ut
(m

bp
s)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●

●

●
●

●
●●

●
●
●

●
●●●

●●

●

●
●
●●

●

●
●
●
●
●
●
●●

●

●
●●

●●
●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
0.1
1.0

10.0
100

0 200 400 600

La
te

nc
y

(s
ec

on
ds

)

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●●
●
●

●

●

●
●

●
●●

●●●
●

●
●

●

●

●●
●

●
●●

●

●
●●

●
●
●

●

●
●
●●●

●
●

●

●
●
●
●

●

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●●●●●
●
●●●●●

●●

0.00
0.25
0.50
0.75
1.00

0 200 400 600
Time (seconds)

Ac
cu

ra
cy

(F
1

Sc
or

e)

Low latency
High accuracy

32

Latency (ms) Accuracy (F1 score)

100 1000 10000 0 0.2 0.4 0.6 0.8 1
Streaming over UDP
Streaming over TCP

HLS
JetStream

JetStream++
AWStream

Streaming
over UDP

Streaming
over TCP AWStreamManual

Policies App−specific

Better

0.0

0.5

1.0

100 10 1 0.1
Freshness, latency reversed (seconds)

Fi
de

lit
y,

ac
cu

ra
cy

 (%
)

Runtime Performance Summary

33

Conclusion
• The emerging wide-area streaming analytics

• They are becoming pervasive with more IoT applications
• They must address scarce and varying WAN bandwidth

• We present AWStream.
• A systematic and quantitative approach towards adaptation
• Novel APIs, automatic profiling, and runtime adaptation

• For more questions,
• Contact: Ben Zhang, benzh@cs.berkeley.edu
• Slides: https://awstream.github.io/talk/talk.pdf
• Repository: https://github.com/awstream

34

