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Wide-Area Streaming Analytics

Demand
Huge data generated at
the edge

Resource
Scarce and varying WAN
bandwidth
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Demand: Huge Data at the Edge

• Machine logs, 25 TB daily at Facebook (2009)
• Electrical grid monitoring, 1.4 million data points per second 

[Andersen and Culler, FAST ‘16]
• Video surveillance, 3 mbps per camera [Amerasinghe, 2009]

• . . . Dropcam, a WiFi video-streaming camera and associated 
cloud backend service for storing and watching the resulting 
video. Dropcam has the fewest clients (2,940) . . .. Yet, each 
client uses roughly 2.8 GB a week and uploads nearly 19 times 
more than they download, implying that Dropcam users do 
not often watch what they record. [Biswas, SIGCOMM ‘15]
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Resource: Scarce and Varying
WAN Bandwidth
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Bandwidth variations throughout the day between Amazon 
EC2 sites. Similar scarcity and variation for wireless 
networks, broadband access networks and cellular networks.

Less than 25%
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What happens when bandwidth
becomes insufficient?
• TCP ensures data delivery, but hurts latency
• UDP sends fast, suffering uncontrolled packet loss
• Manual policies (developer heuristics) are sub-optimal
• JetStream [Rabkin et al., NSDI 14] uses manual policy
• “if  bandwidth is insufficient, switch to sending images at 

75% fidelity, then 50% if  still not enough”

• Application-specific optimizations don’t generalize
• (more on the next slide)
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Application-specific optimizations 
don’t generalize

t=0s, small target in far-field views

t=1s, small difference

Positive if  intersection over 
union (IOU) larger than 0.5.

IOU=0.2 IOU=0.5 IOU=0.8

For a surveillance application that
detects pedestrians on a busy street
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Application-specific optimizations 
don’t generalize

t=0s, small target in far-field views

t=1s, small difference
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Application-specific optimizations 
don’t generalize

t=0s, nearby and large targets

t=1s, large difference due to camera movement
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What happens when bandwidth
becomes insufficient?
• TCP ensures data delivery, but hurts latency
• UDP sends fast, suffering uncontrolled packet loss
• Manual policies (developer heuristics) are sub-optimal
• JetStream [Rabkin et al., NSDI 14] uses manual policy
• “if  bandwidth is insufficient, switch to sending images at 

75% fidelity, then 50% if  still not enough”

• Application-specific optimizations don’t generalize
• Adaptation often requires expertise and manual work to 

explore multidimensional adaptation for each application
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Fidelity vs. Freshness
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Fidelity vs. Freshness

Streaming
over UDP

Streaming
over TCP AWStreamManual
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• Applications must be adaptive.
• Adaptation policies must be,

• precise
• automatically generated
• for each application

Pareto-optimal Profile: maximizing
application accuracy while satisfying
bandwidth requirement (avoid congestion)

11



AWStream Overview

• Systematic and quantitative adaptation
• New programming abstractions to express adaptation
• Automatic data-driven profiling
• Runtime adaptation balancing freshness and fidelity

Develop

Application

maybe APIs

Profiling

Offline
Profiling

Online
Profiling

Training
Data

Accuracy
Function

Runtime

Runtime
Adaptation

Resource
Allocation

Online
Data

var bw acc

1920 10.7 100
1280 8.3 91

Profile
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(1) Streaming Operators and APIs
OperatorData Stream Data Stream

map(f){x1, x2, x3, x4, … } { f(x1), f(x2), f(x3), f(x4), … }

window(2, f){x1, x2, x3, x4, … } { f(x1, x2), f(x3, x4), … }

maybe(k, f){x1, x2, x3, x4, … } { f(x1, k1), f(x2, k2), f(x3, k3), f(x4, k4)… }
AWStream: Adaptive Wide-Area Streaming Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Normal Operators

map (f: I) O) Stream<I>) Stream<O>
skip (i: Integer) Stream<I>) Stream<I>

sliding_window (count: Integer, f: Vec<I>) O) Stream<I>) Stream<O>
... ...

Degradation Operators

maybe (knobs: Vec<T>, f: (T, I)) I) Stream<I>) Stream<I>
maybe_skip (knobs: Vec<Integer>) Stream<I>) Stream<I>

maybe_head (knobs: Vec<Integer>) Stream<Vec<I>>) Stream<Vec<I>>
maybe_downsample (knobs: Vec<(Integer, Integer)>) Stream<Image>) Stream<Image>

... ...

Table 1. Stream processing operators in AWStream. represents a list of elements with type .

The snippet creates a stream of integers, chains a degra-
dation operation, and collects the execution result. In this
example, the knob is [2, 4] and the degradation function per-
forms a wrapping (modular) division where the divisor is the
chosen knob. The knob value modifies the quantization level,
affecting the output: [1, 2, 3, 4] (no degradation), [0, 1, 1, 2]
(k=2), or [0, 0, 0, 1] (k=4). If the stream is then encoded—for
example, run-length encoding as in JPEG [92]—for transmis-
sion, the data size will depend on the level of degradation.

Based on the primitive, one can implement addi-
tional degradation operators for common data types. For in-
stance, will optionally take the top values of a
list; can resize the image to a configured
resolution. AWStream provides a number of such operations
as a library to simplify application development (Table 1).

With our API, the example mentioned in §2.3 can now be
implemented as follows:

This snippet first instantiates a source, which pro-
duces with 1920x1080 resolution and 30
FPS. Two degradation operations follow the source: one that
downsamples the image to 1600x900 or 1280x720 resolu-
tion, and the other that skips every 2 or 5 frames, resulting in
30/(2+1)=10 FPS or 30/(5+1)= 6 FPS. This example then dis-
plays degraded images. In practice, operators for further pro-
cessing, such as encoding and transmission, can be chained.

3.2 Automatic Profiling

After developers use operators to specify potential
degradation operations, AWStream automatically builds an
accurate profile. The profile captures the relationship between

Symbol Description

n number of degradation operations
ki the i-th degradation knob

c = [k1, k2, ...kn ] one specific configuration
C the set of all configurations

B (c ) bandwidth requirement for c
A(c ) accuracy measure for c
P Pareto-optimal set

ci , ci+1, cmax current/next/maximal configuration at runtime
R network delivery rate (estimated bandwidth)

QE, QC messages when is empty or congested
RC message when detects congestion

ACProbe message when requests probing
SProbeDone message when finishes probing

Table 2. Notations used in this paper.

application accuracy and bandwidth consumption under dif-
ferent combinations of data degradation operations. We de-
scribe the formalism, followed by techniques that efficiently
perform offline and online profiling.
Profiling formalism. Suppose a stream processing appli-
cation has n operators. Each operator introduces a
knob ki . The combination of all knobs forms a configuration
c = [k1,k2, ...kn]. The set of all possible configurations C is
the space that the profiling explores. For each configuration
c, there are two mappings that are of particular interest: a
mapping from c to its bandwidth consumption B (c ) and its
accuracy measure A(c ). Table 2 summarizes these symbols.

The profiling looks for Pareto-optimal configurations; that
is, for any configuration c in the Pareto-optimal set P, there
is no alternative configuration c 0 that requires less bandwidth
and offers a higher accuracy. Formally, P is defined as follows:

P = {c 2 C : {c 0 2 C : B (c 0) < B (c ),A(c 0) > A(c )} = ?} (1)

We show examples of knobs, configurations, and accuracy
functions when we present applications in §4 and visualize
the profile of sample applications in Figure 8.
Offline Profiling. We first use an offline process to build
a bootstrap profile (or default profile). Because AWStream
allows arbitrary functions as the degradation functions, it does
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knob ki . The combination of all knobs forms a configuration
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is, for any configuration c in the Pareto-optimal set P, there
is no alternative configuration c 0 that requires less bandwidth
and offers a higher accuracy. Formally, P is defined as follows:

P = {c 2 C : {c 0 2 C : B (c 0) < B (c ),A(c 0) > A(c )} = ?} (1)

We show examples of knobs, configurations, and accuracy
functions when we present applications in §4 and visualize
the profile of sample applications in Figure 8.
Offline Profiling. We first use an offline process to build
a bootstrap profile (or default profile). Because AWStream
allows arbitrary functions as the degradation functions, it does

k is a tunable knob
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let app = Camera::new((1920, 1080), 30)

.maybe_downsample(vec![(1600, 900), (1280, 720)]) 

.maybe_skip(vec![2, 5])

.map(|frame| pedestrian_detect(frame))

.compose();

(1) maybe APIs in use
let quantized = vec![1, 2, 3, 4].into_stream()

.maybe(vec![2, 4], |k, val| val / k) 

.collect();

maybe quantize{1, 2, 3, 4, …}

{1, 2, 3, 4, …}

{0, 1, 1, 2, …}

{0, 0, 0, 1, …}

k = 2

k = 4

No
Adaptation
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(2) Data-driven profiling
let app = Camera::new((1920, 1080), 30)

.maybe_downsample(vec![(1600, 900), (1280, 720)]) 

.maybe_skip(vec![2, 5])

.map(|frame| pedestrian_detect(frame))

.compose();

downsample skip bandwidth accuracy

(1920, 1080) 0 10.7 1.0

(1600, 900) 0 8.3 0.88

(1280, 720) 0 6.3 0.87

(1920, 1080) 2 9.3 0.90

… … …. …

Training
Data

Accuracy
Function

15



(2) Profile: Pareto-optimal Strategy

Bandwidth (normalized)
0 1

0

1
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cc

ur
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y

configuration bandwidth accuracy

c1 10.7 1.0

c2 8.3 0.88

c3 6.3 0.87

c4 9.3 0.90

… …. …
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as a library to simplify application development (Table 1).
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downsamples the image to 1600x900 or 1280x720 resolu-
tion, and the other that skips every 2 or 5 frames, resulting in
30/(2+1)=10 FPS or 30/(5+1)= 6 FPS. This example then dis-
plays degraded images. In practice, operators for further pro-
cessing, such as encoding and transmission, can be chained.
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Table 2. Notations used in this paper.

application accuracy and bandwidth consumption under dif-
ferent combinations of data degradation operations. We de-
scribe the formalism, followed by techniques that efficiently
perform offline and online profiling.
Profiling formalism. Suppose a stream processing appli-
cation has n operators. Each operator introduces a
knob ki . The combination of all knobs forms a configuration
c = [k1,k2, ...kn]. The set of all possible configurations C is
the space that the profiling explores. For each configuration
c, there are two mappings that are of particular interest: a
mapping from c to its bandwidth consumption B (c ) and its
accuracy measure A(c ). Table 2 summarizes these symbols.

The profiling looks for Pareto-optimal configurations; that
is, for any configuration c in the Pareto-optimal set P, there
is no alternative configuration c 0 that requires less bandwidth
and offers a higher accuracy. Formally, P is defined as follows:

P = {c 2 C : {c 0 2 C : B (c 0) < B (c ),A(c 0) > A(c )} = ?} (1)

We show examples of knobs, configurations, and accuracy
functions when we present applications in §4 and visualize
the profile of sample applications in Figure 8.
Offline Profiling. We first use an offline process to build
a bootstrap profile (or default profile). Because AWStream
allows arbitrary functions as the degradation functions, it does

the set of better configuration c’
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(3) Runtime Adaptation

Stream
Source

AnalyticsSocket

Applicationdata

ServerClient (Edge)
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(3) Runtime Adaptation
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(3) Probing at Runtime

Startup Degrade Steady Probe

Bandwidth (normalized)
0 1

0

1
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• These configurations are discrete
• Without probing, applications can

jump to the next configuration that
demands too much bandwidth. 
They end up oscillate between
configurations.

• Probing (with dummy traffic)
stabilizes adaptation.

Available
Bandwidth

Oscillate
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Adaptation in Top-K

Log Window
(1 second)

maybe
head(N)
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(1 second)

maybe
head(N)

N=3

maybe
threshold(T)

T=2

(f3: 4)
(f2: 3)

f2
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File Access
Logs

Group into
(file: count)

Take top-3
with head(3)

Filter with
threshold 2

Global Top-K
after merge
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Adaptation in Top-K
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f2 is not Top-1 in either client, and could have
been purged with different parameter N or T



Evaluations

• Can AWStream generate accurate profiles across
multiple dimensions?
• Can AWStream profile efficiently and support online

profiling?
• Can AWStream runtime improve data freshness and

fidelity when facing insufficient bandwidth?
• Can we use the profiles to guide bandwidth

allocations among multiple applications?
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Profiles across multiple dimensions
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Pedestrian Detection Augmented Reality

• Optimal strategy needs multiple dimensions
• For the same application, different dimensions have different impact.
• For different applications, the same dimension has different impact.
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Profiles are precise

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.4

0.6

0.8

1.0

10 100 1000
Bandwidth (Kbps)

Ac
cu

ra
cy

 (K
en

da
ll¢s

 t
)

● Pareto boundary
tune N

tune T

• The effect of  each dimension is 
not significantly different.
• The profile offers quantified

effects of  adaptation options.
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Runtime Performance Baselines
Baseline Description
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[Rabkin et al., 2014]

Manual Policy: “if  bandwidth is insufficient, switch 
to sending images at 75% fidelity, then 50% if  there 
still isn’t enough bandwidth. Beyond that point, 
reduce the frame rate, but keep the image fidelity.”

JetStream++ Uses adaptation policy generated by AWStream. 
JetStream runtime does not probe (hence may 
oscillate between policies).

HLS
[Pantos and May, 2016]

HTTP Live Streaming represents popular adaptive 
video streaming techniques; used for Periscope video 
stream [Wang et al., 2016].
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RTP/UDP/RTSP video streaming

JetStream
[Rabkin et al., 2014]

Manual Policy: “if  bandwidth is insufficient, switch 
to sending images at 75% fidelity, then 50% if  there 
still isn’t enough bandwidth. Beyond that point, 
reduce the frame rate, but keep the image fidelity.”

JetStream++ Uses adaptation policy generated by AWStream. 
JetStream runtime does not probe (hence may 
oscillate between policies).

HLS
[Pantos and May, 2016]

HTTP Live Streaming represents popular adaptive 
video streaming techniques; used for Periscope video 
stream [Wang et al., 2016].
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●AWStream JetStream++ JetStream
HLS Streaming over TCP Streaming over UDP
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●AWStream JetStream++ JetStream
HLS Streaming over TCP Streaming over UDP
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Conclusion
• The emerging wide-area streaming analytics

• They are becoming pervasive with more IoT applications
• They must address scarce and varying WAN bandwidth 

• We present AWStream.
• A systematic and quantitative approach towards adaptation
• Novel APIs, automatic profiling, and runtime adaptation

• For more questions,
• Contact: Ben Zhang, benzh@cs.berkeley.edu
• Slides: https://awstream.github.io/talk/talk.pdf
• Repository: https://github.com/awstream
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