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Rise of RDMA in datacenters

Traditional Networking Stack RDMA

User Application| Data User Application‘ Data

OS Copy J|_>|  o©s e
Hardware NIC ]DDDD[ Specialized NIC ]DDDDD

Enables low CPU utilization, low latency, high throughput.



Current Status

* RoCE (RDMA over Converged Ethernet).
— Canonical approach for deploying RDMA In datacenters.

— Needs lossless network to get good performance.

* Network made lossless using Priority Flow Control (PFC).
— Complicates network management.

— Various known performance Issues.
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ory Access (RDMA) can. On 1P-routed datacenter networks,
RDMA is deployed using RoCEv2 protocol, which relies on
Priorily—based Flow Control (PFC) to enable a drop-free net-
work. However, PEC can lead to poor application perfor-

Incremental changes to RoCE NIC design

Is a lossless network really needed?
No! |

can .enable better performance
without a lossless network
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History of RDMA

* RDMA traditionally used in Infiniband clusters.

— Losses are rare (credit-based flow control).

* Transport layer in RDMA NICs not designed to deal
with losses efficiently.

— Recelver discards out-of-order packets.

— Sender does go-back-N on detecting packet loss.



RDMA over Converged Ethernet

e RoCE: RDMA over Ethernet fabric.
— RoCEv2: RDMA over |P-routed networks.

* Infiniband transport was adopted as it Is.
— Go-back-N loss recovery.

— Needs a lossless network for good performance.



Network made lossless by enabling PFC

* PFC: Priority Flow Control

&
C@@ Buffer

* Complicates network management.

 Performance issues:

— head-of-the-line-blocking, unfairness, congestion spreading,
deadlocks.



Recent works highlighting PFC issues

RDMA over commodity Ethernet at scale, SIGCOMM 2016

Deadlocks in datacenter: why do they form and how to avoid
them, HotNets 2016

Unlocking credit loop deadlock, HotNets 2016

Tagger: Practical PFC deadlock prevention in datacenter
networks, CoNext 201/



Can we alter the RoCE NIC design

such that a lossless network
is not required!?



Why not iVWARP?

* Designed to support RDMA over a fully general network.
— Implements entire TCP stack in hardware.
— Needs translation between RDMA and TCP semantics.

e General consensus:

— IWARP Is more complex, more expensive, and has worse
performance.



iVWARP vs RoCE

Cost in
_ Dec 2016 | | Mroughput

IVWWARP: Chelsio -580-CR $760 3.24Mpps  2.89us
ROCE: Mellanox MCX 41 6A-BCAT  $420 14.7Mpps  0.94us

“Could be due to a number of reasons besides transport design:
different profit margin, engineering effort, supported features etc.



Our work shows that

* IWARP had the right philosophy.
— NICs should efficiently deal with packet losses.

— Performs better than having a lossless network.

* But we can have a design much closer RoCE.
— No need to support the entire TCP stack.

— |dentify incremental changes for better loss recovery.

— Less complex and more performant than IVWARR



Improved RoCE NIC (IRN)

|. Better loss recovery.



RoCE uses go-back-N loss recovery

UuphrWNE

GUhrhWN

KKK

Recelver discards all
out-of-order packets.

Sender retransmits all packets
sent after the last acked packet.



Instead of go-back-N loss recovery...

UuphrWNE

GUhrhWN

xAKK

Recelver discards all
out-of-order packets.

Sender retransmits all packets
sent after the last acked packet.



...use selective retransmission

UuphrWNE

\

Receiver does not discard
out-of-order packets and
selectively acknowledges them.

Sender retransmits only
the lost packets.

Use bitmaps to track lost packets.

0/1{1]/1]/0]0
!

Seq.No. =2




Handling timeouts

* Very small timeout value
— Spurious retransmissions.
* Very large timeout value

— High tail latency for short messages.

 |RN uses two timeout values
— RTO,,,.: Less than N packets in flight.

low"

— RTO, gy Otherwise.



Improved RoCE NIC (IRN)

|. Better loss recovery.

— Selective retransmission instead of go-back-N.
* Inspired from traditional TCP but simpler.

— Two timeout values instead of one.

2. BDP-FC: BDP based flow control.



BDP-FC

* Bound the number of in-flight packets by the bandwidth-
delay product (BDP) of the network.

* Reduces unnecessary queuing.

* Strictly upper-bounds the amount of required state.

0 1/1/1/0/0

1
BDP




Improved RoCE NIC (IRN)

|. Better loss recovery.

— Selective retransmission instead of go-back-N.
* Inspired from traditional TCP but simpler.

— Two timeout values instead of one.

2. BDP-FC: BDP based flow control.

— Bound the number of in-flight packets by the bandwidth-
delay product (BDP) of the network.



Can IRN eliminate the need for a
lossless network!?



Default evaluation setup

Mellanox simulator modeling ConnectX4 NICs.
— Extended from Omnet/Inet.

Three layered fat-tree topology.

|inks with capacity 40Gbps and delay 2us.
—eavy-tailed distribution at /0% utilization.
Per-port buffer of 2 x (bandwidth-delay product).




Key results

IRN without PFC |
berforms IRN does not RoCE requires
better than require PFC. PFC.
RoCE with PFC.
I RoCE -IRNl PFC mmmNo PFC PFC mmmNo PFC
= T-O | — |
| n 1.4E wn 8}
é’ 1.2} g 7t
| I:’ 1.0} — g—
- 0.8F -
i &-) 0.6 F &_) g:
9 0.4F 9 > I
- 0.2 71
< 0.0 <}
IRN RoCE




Average flow completion times

IRN without PFC

performs
better than
RoCE with PFC.
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Tail flow completion times

IRN without PFC

performs
better than require PFC. PFC.

RoCE with PFC.

IRN does not RoCE requires

g RoCE —IRN| PFC mmmNo PFC PFC mmmNo PFC
(Vp] ] )y Z£0 | n 30 T
£ 50t - £ 20} £ 70 L ]
40 | - -
L_) Q 15 = @) B
e 30¢ ] 10 5 40+
()] i ] Q £
i) 20 F l % 5 % B
= L SF - NS
§ 10F . | o | o 11
S O °’ IRN > RoCE




Average slowdown

IRN without PFC

performs
better than
RoCE with PFC.
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With explicit congestion control
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With explicit congestion control

IRN without PFC
berforms IRN does not RoCE requires
better than require PFC. PFC.
RoCE with PFC.
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With explicit congestion control

IRN without PFC
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Robustness of results

* Jested a wide range of experimental scenarios:
— Varying link bandwidth.
— Varying workload.
— Varying scale of the topology.
— Varying link utilization.
— Varying buffer size.

* Our key takeaways hold across all of these scenarios.



Can IRN eliminate the need for a
lossless network? Yes.

Can IRN be implemented easily!?



Implementation challenges

* Need to deal with out-of-order packet arrivals.
o Crucial information in first packet of the message.
- Replicate in other packets.



Implementation challenges

* Need to deal with out-of-order packet arrivals.

o Crucial information in last packet of the message.
- Store it at the end-points.



Implementation challenges

* Need to deal with out-of-order packet arrivals.

o Implicit matching between packet and work queue
element (WQE).
- Explicitly carry WQE sequence in packets.



Implementation challenges

* Need to deal with out-of-order packet arrivals.

* Need to explicitly send Read Acks.



Implementation overheads

* New packet types and header extensions.
* Upto |6 bytes.

* Jotal memory overhead of 3-107%.

* FPGA synthesis targeting the device on an RDMA NIC,
- Less than 4% resource usage.
- 45.45Mpps throughput (without pipelining).



Can IRN eliminate the need for a
lossless network? Yes.

Can IRN be implemented easily? Yes.



Summary

* |IRN makes incremental updates to the RoCE NIC design
to handle packet losses better.

* IRN performs better than RoCE without requiring a
lossless network.

* [he changes required by IRN introduce minor overheads.

Contact: radhika@eecs.berkeley.edu

Thank
You!

Code: http://netsys.github.io/irn-vivado-hls/




