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Software-Defined Networking

1
SDN simplifies network management with logically centralized network control.



Network Functions
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Network Functions
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Network functions provide L7 information by extracting “state”.



Putting Them Together

Integrating the information
extracted by network functions
into SDN programming enables
adaptive, cross-layer network
control.

• adaptive: react dynamically
to traffic

• cross-layer: control traffic
based on L2-L7 information
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Unified SDN Programming



What are the design challenges of
a unified SDN programming framework?

&

Why are existing SDN programming frameworks not sufficient?
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C1: Integrating Network Function State into SDN Programming

• State-of-the-art SDN programming
languages support L2-L4
programming naturally as all L2-L4
information is contained in every
single packet.

• Network function states are L7
which are NOT contained in packet
header fields. They can be unknown
and constantly updated by finite
state machines.

Examples from NetKAT (Anderson et al.), Frenetic (Foster
et al.), Maple (Voellmy et al.) and Merlin (Soulé et al.)
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We need a simple abstraction to encode L7 information in SDN programming.



C2: Constructing Consistent, Correlated Routes

• Route constructions may be
required to be correlated: routes
cannot be calculated independently.

If the forward and return paths are computed
independently using shortest path, the requirement
will not be satisfied.

Requirement Case 1: 
The return path be the inverse of the forward path  
(i.e., symmetry). 
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We need to systematically construct consistent, correlated routes.



High-level Programming Abstractions in Trident

Packet Selector Route SpecificationBinding

C1: Encode L7 Information C2: Systematically Construct
Consistent Correlated Routes

To address the aforementioned challenges
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High-level Programming Abstractions in Trident

Packet Selector Route SpecificationBinding

Stream Attributes &
3-Way/Fallback Branch

Route Sets &
Algebraic Operations

To address the aforementioned challenges, Trident introduces

• stream attribute, to encode a network function state as if it is a header field
so that programmers can select packets based on network function states,

• route algebra, a simple yet flexible abstraction to systematically construct
consistent, correlated routes.
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High-level Programming Abstractions in Trident

C3: Handling Dynamicity

Packet Selector Route SpecificationBinding

Stream Attributes &
3-Way/Fallback Branch

Route Sets &
Algebraic Operations

Network function states are dynamic
• When the state of a finite state machine for a network function changes, the
corresponding route should be updated to be consistent.

• Handling dynamicity manually is complex and error-prone.
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We need to automatically handle consistent updates!



High-level Programming Abstractions in Trident

Live Variable
3-Valued Logic, Automatic Dependency Management & Consistent Updates

Packet Selector Route SpecificationBinding

Stream Attributes &
3-Way/Fallback Branch

Route Sets &
Algebraic Operations

Trident introduces live variable abstraction
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High-level Programming Abstractions in Trident

Live Variable
3-Valued Logic, Automatic Dependency Management & Consistent Updates

Packet Selector Route SpecificationBinding

Stream Attributes &
3-Way/Fallback Branch

Route Sets &
Algebraic Operations

Trident introduces live variable abstraction to handle dynamicity of both stream
attributes and route algebra.
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Workflow of Trident

1 Network operator &
programmer specifies data
schema for network
function states.
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Workflow of Trident

3 Network operator submits
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Workflow of Trident

4 Trident evaluates the
program and calculates the
corresponding routes.
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Workflow of Trident

5 A change comes: a network
function updates its state, a
network state changes (e.g.,
a link fails), or a
configuration is changed
(e.g., a change to an access
control list).
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Workflow of Trident

6 Trident automatically
updates the routes for any
change.
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Stream Attribute: Detail

Observation: Different network function states are computed from different sets
of packets.

Example

For example:

• HTTP URI: Computed from packets of the same TCP connection defined
by TCP 5-tuple (e.g., <10.0.0.2, 10.0.1.2, 1234, 80, tcp>)

• Heavy hitter (source): Computed from packets with the same source IP
address (e.g., 10.0.0.2).
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Stream Attribute: Detail

Define a stream attribute:

• The type information, e.g., String, Int
• A descriptive name, e.g., HTTP_URI, authenticated
• The stream type (bit masks on packet header fields) specifying the set of
packets to compute the network function state, e.g., TCP5TUPLE, SRC_IPADDR,
DST_IPADDR
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Stream Attribute: Detail

Use a stream attribute just like a packet header
1 pkt.http_uri, pkt.authenticated, pkt.heavy_hitter, ...
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Stream Attribute: Detail

Use a stream attribute just like a packet header
1 pkt.http_uri, pkt.authenticated, pkt.heavy_hitter, ...

Stream attribute MAY have an unknown value.

Trident treats unknown values as valid and uses Kleene’s 3-valued logic to select
packets based on stream attribute.

Truth tables for ∧ and ∨ in Kleene’s 3-valued logic (T - True, F - False, U - Unknown)

∧ T F U
T T F U
F F F F
U U F U

∨ T F U
T T T T
F T F U
U T U U
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Stream Attribute: Detail

Use a stream attribute just like a packet header
1 pkt.http_uri, pkt.authenticated, pkt.heavy_hitter, ...

Stream attribute MAY have an unknown value.

Trident treats unknown values as valid and uses Kleene’s 3-valued logic to select
packets based on stream attribute.

1 // 3-way branch
2 if ((pkt.authenticated) && (pkt.http_uri === "www.xyz.com")) {
3 // true branch
4 } else {
5 // else branch
6 } unknown {
7 // unknown branch
8 }

1 // fallback branch
2 iff ((pkt.authenticated) && (pkt.http_uri === "www.xyz.com")) {
3 // true branch
4 } else {
5 // else and unknown branch
6 } 9



Route Algebra: Details

Objective: Use well-structured, declarative expressions to specify the
construction of consistent, correlated routes (motivated by prior studies such as
waypoint-based routing1 and relational algebra2).

• The basic unit of route algebra is route set.
• Each route set has a network function indicator to specify the symmetry
requirements of network functions.

1NetKAT (Anderson et al., POPL’14), Merlin (Soulé et al., CoNEXT’14), Propane (Beckett et al., SIGCOMM’16/PLDI’17), Genesis (Subramanian et al., POPL’17)
2EF Codd. “RELATIONAL COMPLETENESS OF DATA BASE SUBLANGUAGES”. In: Computer (1972)
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Route Algebra: Details

Union (∪)/Intersection (∩)/Difference (\)
Given two route set ∆1 and ∆2 , return the union/intersection/dif-
ference of ∆1 and ∆2 :

∆1 ∪ ∆2 = {r | r ∈ ∆1 ∨ r ∈ ∆2},
∆1 ∩ ∆2 = {r | r ∈ ∆1 ∧ r ∈ ∆2},
∆1 \ ∆2 = {r | r ∈ ∆1 ∧ r /∈ ∆2}.

Union (∪∼)/Intersection (∩∼)/Difference (\∼) by Equivalence
Given two route set ∆1 and ∆2 , return the union/intersection/dif-
ference of ∆1 and ∆2 using ∈∼ instead of ∈:

∆1 ∪∼ ∆2 = {r ∈ ∆1 ∪ ∆2 | r ∈∼ ∆1 ∨ r ∈∼ ∆2},
∆1 ∩∼ ∆2 = {r ∈ ∆1 ∪ ∆2 | r ∈∼ ∆1 ∧ r ∈∼ ∆2},
∆1 \∼ ∆2 = {r ∈ ∆1 ∪ ∆2 | r ∈∼ ∆1 ∧ r /∈∼ ∆2}.

Concatenation (+)
Given two route sets∆1 and∆2 , return a new route set by concatenat-
ing all route pairs (r1, r2) in∆1×∆2 and removing the invalid ones:

∆1 + ∆2 = {r1 + r2 | r1 ∈ ∆1, r2 ∈ ∆2, dstr1 = srcr2}.

Inversion (≍)
Given a route set ∆, return the inverse of r ∈ ∆:

≍ ∆ = {≍ r | r ∈ ∆}.

Preference (▷)
Given two route sets ∆1 and ∆2 , return the preferred route. (If there
is an equivalent route in ∆1 , do not use the ones in ∆2):

∆1 ▷ ∆2 = {r | r ∈ ∆1 ∨ (r ∈ ∆2 ∧ ∄r′ ∈ ∆1, r ∼ r′)}.

Selection (σ)
Given a route set ∆ and an evaluation function f : R∗ 7→ {0, 1},
return all routes in ∆ that are evaluated as 1:

σf(∆) = {r ∈ ∆ | f(r) = 1}.

Optimal selection (⋄)
Given one route set ∆ and a routing cost function d : R∗ 7→ R,
return any route with the minimum value:

⋄d(∆) = arg min
r∈∆

d(r).

Arbitrary selection (∗)
Given one route set ∆, return a route set containing exactly one
route r in ∆:

∗∆ = ⋄1(∆).

1NetKAT (Anderson et al., POPL’14), Merlin (Soulé et al., CoNEXT’14), Propane (Beckett et al., SIGCOMM’16/PLDI’17), Genesis (Subramanian et al., POPL’17)
2EF Codd. “RELATIONAL COMPLETENESS OF DATA BASE SUBLANGUAGES”. In: Computer (1972)
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Please see the paper for detailed specification.



Route Algebra: Example

• Route for a flow from a host to a gateway with link capacity preference
(prefers 100 Gbps over 10 Gbps):

∗
(
σcap=100Gbps(H : − : GW) ▷ σcap=10Gbps(H : − : GW)

)

11

Step 1: Compute the primary route set with high link capacity.
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• Route for a flow from a host to a gateway with link capacity preference
(prefers 100 Gbps over 10 Gbps):

∗
(
σcap=100Gbps(H : − : GW) ▷ σcap=10Gbps(H : − : GW)

)

11

Step 2: Compute the backup route set with low link capacity.



Route Algebra: Example

• Route for a flow from a host to a gateway with link capacity preference
(prefers 100 Gbps over 10 Gbps):

∗
(
σcap=100Gbps(H : − : GW) ▷ σcap=10Gbps(H : − : GW)

)

11

Step 3: Combine them together with the preference operator.



Route Algebra: Example

• Route for a flow from a host to a gateway with link capacity preference
(prefers 100 Gbps over 10 Gbps):

∗
(
σcap=100Gbps(H : − : GW) ▷ σcap=10Gbps(H : − : GW)

)

11

Step 4: Select only one route for unicast.



Live Variable: Details

Objective: Make dependency tracking and updates transparent to programmers
(motivated by functional reactive programming3).

• Live variable is a traceable data type which stores the value and the
computation process (i.e., dependencies and computation methods).

• Stream attribute and route algebra are just higher abstractions of live
variables.

• The update of live variables satisfies the glitch-free consistency.

3Fran (Elliott and Hudak, IFIP’97), Dream (Margara and Salvaneschi, DEBS’14) and REScala (Drechsler et al., OOPSLA’14)
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(motivated by functional reactive programming3).

• Live variable is a traceable data type which stores the value and the
computation process (i.e., dependencies and computation methods).

• Stream attribute and route algebra are just higher abstractions of live
variables.

• The update of live variables satisfies the glitch-free consistency.

3Fran (Elliott and Hudak, IFIP’97), Dream (Margara and Salvaneschi, DEBS’14) and REScala (Drechsler et al., OOPSLA’14)

4Alessandro Margara and Guido Salvaneschi. “We Have a DREAM: Distributed Reactive Programming with Consistency Guarantees”. In: DEBS ’14. New
York, NY, USA: ACM, 2014.
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Glitch-freedom4: Intermediate consequences of a data change must not be observed.



Tie Everything Together
Example Program: Block traffic for
infected hosts and construct routes
using concatenation
Events:

• When any network component on
r_1/r_2 changes, the new route (r_1 +
r_2) is automatically recomputed

• When the host status changes to
infected, all packets are dropped

• When the host status is cleared (e.g.,
through an admin interface or timeout),
a route r_1 + r_2 is automatically
recomputed

1 iff (pkt.is_endhost_infected) {
2 drop(pkt)
3 } else {
4 bind(pkt, r_1 + r_2)
5 }

13
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Implementation Highlights

Efficient update: how does Trident achieve fast updates?
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Efficient Update

Objective: Leverage semantics of operators to achieve fast updates.

Example:
val p = ShortestPath(G, s, t)
val ps = snapshot(p)
val b = ffr(G, ps)
val r = any(ps >> b)

• Assume a change to G that invalidates both p and b.

• Trident recomputes p and b.

• Trident returns r as soon as p is ready and not Unknown.

15
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At time 0: no routes is ready
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At time 1: the primary route p0 is ready. With efficient update, Trident selects p0 as r.
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At time 2: the backup route b0 is also ready. The standard update will selects p0 as r.
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At time 3: a data change e happens and invalidates the primary route.



Efficient Update

Objective: Leverage semantics of operators to achieve fast updates.

Example:
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At time 3: now p is not ready, Trident selects b0 as r.



Efficient Update

Objective: Leverage semantics of operators to achieve fast updates.

Example:
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val ps = snapshot(p)
val b = ffr(G, ps)
val r = any(ps >> b)

UNK p0

UNK b0

p0UNK

UNK

UNK

p0 b0

ShortestPath ShortestPathfrr

T

p

r
No Efficent

Update

b

e

b0

p1

UNK

p1

UNK

15

At time 4: p has a new value p1. With efficient update, Trident selects p1 as r.



Efficient Update

Objective: Leverage semantics of operators to achieve fast updates.
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With this simple code, Trident achieves lifecycle management for backup routes.



Efficient Update

Objective: Leverage semantics of operators to achieve fast updates.

General rule: For all route algebra operators, if the partial result has no unknown
subsets, the output guarantees glitch-free consistency and we can apply efficient
update.

Expr Known Subset Unknown Subset
∆1 ∪ ∆2 K1 ∪ K2 U1 ∪ U2
∆1 ∩ ∆2 K1 ∩ K2 (K1 ∩ U2) ∪ (U1 ∩ K2) ∪ (U1 ∩ U2)
∆1 \ ∆2 TU2=∅(K1 − K2) (T¬(U2=∅)(K1) ∪ U1) − (K2 ∪ U2)

∆1 + ∆2 K1 + K2 (K1 + U2) ∪ (U1 + K2) ∪ (U1 + U2)
≍ ∆ ≍ K ≍ U
σf(∆) σf(K) σf(U)

⋄d(∆) TU=∅(⋄d(K)) ⋄d(T¬(U=∅)(⋄d(K)) ∪ ⋄d(U))

∆1 ▷ ∆2 K1 ∪ TU1=∅(K2 − K1) U1 ∪ ((T¬(U1=∅)(K2) ∪ U2) \ (K1 ∪ U1))

∗∆ ∗K TK=∅(∗U)

Tε(S) - the value is S ∪ {ε} if ε = true, and {ε} otherwise.

Table 1: Known/Unknown Subsets of Route Algebra.
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Evaluation

• How much effort does one need to integrate a network function into Trident?
• How useful is efficient update?

16



Evaluation Settings

• CPU: Intel Xeon CPU E5-2650 2.30GHz
• Memory: 64G
• OS: Fedora 26
• Network: Mininet 2.3.0d1

17



Modification on Network Functions

Two case studies:

• Bro: a deep packet inspection framework
• FreeRadius: an open-source Radius server

Name Attribute Language LoC (f) LoC (a) LoC (c)
DPI HTTP URL Bro 40 2 2
FreeRadius Auth status DSL 0 12 0

LoC - Additional lines of code, f - LoC to implement the library in the given framework/language, a - LoC in a given NF, c - LoC for configuration.

18



Efficient Update Micro Benchmark

We demonstrate the effect of efficient update by measuring the recovery time of
val p = ShortestPath(G, s, t)
val ps = snapshot(p)
val b = ffr(G, ps)
val r = any(ps >> b)

for a single (src, dst) pair in 4 different topologies.

We compare the results of

• The initial computation (Init) v.s. fast rerouting stage (FR)
• The standard update method (SCP) v.s. the efficient update (ECP)

19



Efficient Update Micro Benchmark
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Efficient Update Micro Benchmark
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Trident demonstrates an improvement of up to 39% in initial computation
and an improvement of 1 to 2 magnitudes in the fast rerouting stage.



Summary
Trident is a unified SDN programming framework which

• uses stream attribute to naturally integrate network function state into
logically centralized SDN programming;

• uses route algebra, a simple yet powerful abstraction to systematically
construct consistent, correlated routes;

• uses live variable to achieve unified automatic data dependency
management and glitch-free updates – achieving a more general intent
networking framework.

Future directions:

• Extend from “write-only” network functions to generic network functions
• Verification with Trident
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Thanks for your attention!

Q & A

Kai Gao Taishi Nojima Y. Richard Yang
godrickk@gmail.com taishi.nojima@aya.yale.edu yry@cs.yale.edu
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Design Space

Basic Programming Model

SDN Programming Languages

Define behaviors as if processing
each packet based on its attributes

• Simple programming paradigm

• Cannot handle layer-7 information naturally

Event-Driven SDN+NF Systems

Define behaviors by specifying state
and transitions

• Fit well with how NF process packets

• Require manual efforts to identify transitions
and can be complex when many NF states are
involved

Can we inherit the simple paradigm of SDN programming but integrate
network function states naturally?
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Design Space
Route Specification

Fully Customizable Routing

The policy can execute a routing func-
tion over the graph to find the path

• Very flexible

• Complex

• May not be efficient

One-Big-Switch Abstraction

The policy only specifies the output
logical port

• Simple

• Optimized by the system

• Not flexible

• Cannot express path requirements

Can we have a simple abstraction for route specification but still retain
enough flexibility?
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Design Space
Handling Dynamicity

Pre-defined Dependencies

The system predefines some de-
pendencies with domain knowledge
(such as failure model of network
components)

• Automatic

• Simplify the job for programmers

• Hard-coded

Manual Dependency Management

Programmers manually identify and
handle all dependencies (for exam-
ple, using the Observer pattern)

• Optimized

• Accurate

• Error-prone

• Difficult to manage and maintain

Can we achieve automatic dependency management with guaranteed
correctness (i.e., data plane configuration is consistent with the control
plane state)? 21



Motivating Example

• HTTP connections with a trusted URL can skip the DPI nodes
• HTTP connections with a trusted URL to a large-scale data transfer service
should use high-bandwidth links whenever possible
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Why cannot existing SDN programming languages work?

The ambiguity of “failed” predicates with network function states

• For sip == 10.0.0.2, the result is either true or false for all packets
• For is_trusted(http_url), the result can be true, false and unknown
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Why cannot existing SDN programming languages work?

The correlation of routes cannot be explicitly specified

• Some network functions require traffic of the same stream to be processed
on the same node and must migrate to the same new instance
simultaneously (e.g., TCP & HTTP state machine)

• Some routes depend on others (e.g., link protection)
• Some routes depend on certain conditions (e.g., link capacity requirement)
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Why cannot existing SDN programming languages work?

The dynamicity in both packet selection and route computation is closely related

• A single NF state may affect multiple streams (for example, streams with the
same heavy hitter status may have different HTTP URL values)

• Routes for multiple streams are computed together by a single routing
algorithm
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