
SpeedLight: Synchronized
Network Snapshots

Nofel Yaseen, John Sonchack, Vincent Liu

1

Network Measurements

2

Network Measurements

ÅMeasurements are how we understand networks
ÅOperators: configuration, management and provisioning

ÅArchitects: designing new protocols and topologies

ÅResearchers: measurement studies and evaluation

ÅToday’s measurement techniques
ÅSingle device, e.g., counters, sampling

ÅSingle path or packet, e.g., pings, INT, ECN

3

A Case for Consistency

A B

X Y

4

A Case for Consistency

A B

X Y

5

A Case for Consistency

What is the reason for this packet drop?

A B

X Y

6

A Case for Consistency

7

A Case for Consistency

8

A Case for Consistency

9

Congestion

A Case for Consistency

10

Congestion Poor Load Balancing

A Case for Consistency

11

Congestion Poor Load Balancing

ÅSingle Device: No relationship among measurements across time or devices.

A Case for Consistency

12

Congestion Poor Load Balancing

ÅSingle Device: No relationship among measurements across time or devices.

A Case for Consistency

13

Congestion Poor Load Balancing

ÅSingle Device: No relationship among measurements across time or devices.
ÅSingle Path or Packet: No relationship among measurements across paths or packets.

A Case for Consistency

14

Congestion Poor Load Balancing

ÅSingle Device: No relationship among measurements across time or devices.
ÅSingle Path or Packet: No relationship among measurements across paths or packets.

Existing tools fail to capture simultaneous behavior

Our Goal

15

Our Goal

Truly simultaneous behavior is not possible
ÅCausal consistency, i.e., the set should make sense

ÅNear synchrony, i.e., it should be as close as
possible to an actual state (<RTT)

A set of data-plane measurements that capture the state of the
network at ~(single point in time)

16

Speedlight
A set of data-plane measurements that capture the state of the

network at ~(single point in time)

17

Speedlight

ÅA P4-based system for Synchronized Network Snapshot
ÅImplemented on Wedge100BF

ÅCan capture network-wide state of any value accessible in the data
plane

ÅAmenable to partial deployment

Å<100μs synchronization, even for large networks

A set of data-plane measurements that capture the state of the
network at ~(single point in time)

18

Outline

ÅChandy- LamportAlgorithm.

ÅChallenges of taking Synchronized Network Snapshots.

ÅProtocol

ÅPrototype Implementation

ÅEvaluation

19

Global Network View

ÅPartition the network into pre- and post-snapshot
Åe is pre-snapshot ᵼall events that caused e are pre-snapshot
ÅE.g., receive and send of a message

Figure adapted from Linh T. X. Phan

Event B0 Event B1 Event B2 Event B3

Event A0 Event A1 Event A2 Event A3

A

B

20

Global Network View

ÅPartition the network into pre- and post-snapshot
Åe is pre-snapshot ᵼall events that caused e are pre-snapshot
ÅE.g., receive and send of a message

Figure adapted from Linh T. X. Phan

Event B0 Event B1 Event B2 Event B3

Event A0 Event A1 Event A2 Event A3

A

B

Inconsistent cut

21

Global Network View

ÅPartition the network into pre- and post-snapshot
Åe is pre-snapshot ᵼall events that caused e are pre-snapshot
ÅE.g., receive and send of a message

Figure adapted from Linh T. X. Phan

Event B0 Event B1 Event B2 Event B3

Event A0 Event A1 Event A2 Event A3

A

B

Inconsistent cut Consistent cut

22

Chandy–Lamport (CL) Snapshots

ÅMessages carry the current SS#
ÅOn seeing a message with a new SS# for the first time
ÅNode takes a local checkpoint
ÅNode attaches the new SS# to all subsequent messages

ÅOn seeing a message with an old SS#
ÅMessage was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1

23

Chandy–Lamport (CL) Snapshots

ÅMessages carry the current SS#
ÅOn seeing a message with a new SS# for the first time
ÅNode takes a local checkpoint
ÅNode attaches the new SS# to all subsequent messages

ÅOn seeing a message with an old SS#
ÅMessage was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1

24

Chandy–Lamport (CL) Snapshots

ÅMessages carry the current SS#
ÅOn seeing a message with a new SS# for the first time
ÅNode takes a local checkpoint
ÅNode attaches the new SS# to all subsequent messages

ÅOn seeing a message with an old SS#
ÅMessage was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1
SS# 2

25

Chandy–Lamport (CL) Snapshots

ÅMessages carry the current SS#
ÅOn seeing a message with a new SS# for the first time
ÅNode takes a local checkpoint
ÅNode attaches the new SS# to all subsequent messages

ÅOn seeing a message with an old SS#
ÅMessage was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1
SS# 2

26

Chandy–Lamport (CL) Snapshots

ÅMessages carry the current SS#
ÅOn seeing a message with a new SS# for the first time
ÅNode takes a local checkpoint
ÅNode attaches the new SS# to all subsequent messages

ÅOn seeing a message with an old SS#
ÅMessage was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1
SS# 2

SS# 2

27

Chandy–Lamport (CL) Snapshots

ÅMessages carry the current SS#
ÅOn seeing a message with a new SS# for the first time
ÅNode takes a local checkpoint
ÅNode attaches the new SS# to all subsequent messages

ÅOn seeing a message with an old SS#
ÅMessage was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1
SS# 2

SS# 2

SS# 2

28

Challenges for Synchronized Network Snapshots

29

Challenges for Synchronized Network Snapshots

1. CL provides no guarantee of synchrony
ÅWe want something that’s close to an actual state

2. CL assumes single-threaded nodes, FIFO channels
ÅModern networks are highly parallel –breaks consistency

3. CL assumes general purpose CPUs
ÅSwitch data planes are extremely limited

ÅSwitch CPUs are no better than remote hosts (wrt consistency)

30

Observer

Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony

31

Observer

Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony

32

ÅRouter CPUs are synchronized via PTP

Observer Take SS# n at time t

ÅRouter CPUs are synchronized via PTP

ÅUser/Observer schedules a snapshot at everyrouter

Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony

33

Observer Take SS# n at time t

ÅRouter CPUs are synchronized via PTP

ÅUser/Observer schedules a snapshot at everyrouter

CPU

ASIC

Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony

34

Observer Take SS# n at time t

ÅRouter CPUs are synchronized via PTP

ÅUser/Observer schedules a snapshot at everyrouter

CPU

ASIC

Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony

35

Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency

Observer

CPU

Figure from P4 language Specification

36

Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency

Observer

CPU

37

ÅData plane snapshot on the level of individual processing
units and priority channels

Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency

Observer

CPU

ÅData plane snapshot on the level of individual processing
units and priority channels

ÅSnapshot propagates even if CPU invocation is delayed 38

Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency

Observer

CPU

ÅData plane snapshot on the level of individual processing
units and priority channels

ÅSnapshot propagates even if CPU invocation is delayed

Ethernet

IP

Snapshot

TCP/UDP

Data

39

Compensate for Data-plane Limitations
Challenge 3: CL assumes general purpose CPUs

40

ÅProgrammable ASICs are limited
ÅLimited programming model, registers and accesses

ÅControl plane compensates, for example:
ÅDetects snapshot completion
ÅNotifications

ÅExtract from RAM

ÅLack of traffic
ÅLiveness

ÅSkipped snapshots

Compensate for Data-plane Limitations
Challenge 3: CL assumes general purpose CPUs

41

Implementation and Evaluation
ÅImplemented on a Barefoot Wedge100BF-32X
ÅControl plane: ~2000 lines of Python

ÅData plane: ~1000 lines of P4 (per variant)

ÅEvaluation
ÅHow synchronized is Speedlight?

ÅWhat is the overhead?

ÅHow does its results compare against current mechanism?

42

Implementation and Evaluation
ÅImplemented on a Barefoot Wedge100BF-32X
ÅControl plane: ~2000 lines of Python

ÅData plane: ~1000 lines of P4 (per variant)

ÅEvaluation
ÅHow synchronized is Speedlight?

ÅWhat is the overhead?

ÅHow does its results compare against current mechanism?

43

How Synchronized is Speedlight?

44

How Synchronized is Speedlight?

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Synchronization (us)

Speedlight Polling

45

How Synchronized is Speedlight?

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Synchronization (us)

Speedlight Polling

Median: 6.4μs

46

How Synchronized is Speedlight?

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Synchronization (us)

Speedlight Polling

Median: 6.4μs Median: 3500 μs

47

How Does Synchronization Scale?

48

How Does Synchronization Scale?

 0

 20

 40

 60

 80

 100

10 100 1000 10000

S
y
n

c
h
ro

n
iz

a
ti
o

n
 (

u
s
)

Number of Routers

49

ÅAverage synchronization in simulated network of 64-port routers

How Does Synchronization Scale?

 0

 20

 40

 60

 80

 100

10 100 1000 10000

S
y
n

c
h
ro

n
iz

a
ti
o

n
 (

u
s
)

Number of Routers

ÅAverage synchronization in simulated network of 64-port routers
ÅNumber of routers only increases probability of hitting tail, not

length of the tail 50

What’s the Overhead?

51

What’s the Overhead?

ÅNo delays

ÅNetwork Overhead: 8 bytes per Packet

52

What’s the Overhead?

ÅNo delays

ÅNetwork Overhead: 8 bytes per Packet

ComputationalResources

Stateless ALUs 24

StatefulALUs 11

53

What’s the Overhead?

ÅNo delays

ÅNetwork Overhead: 8 bytes per Packet

ComputationalResources

Stateless ALUs 24

StatefulALUs 11

Memory Resources

SRAM 770 kB

TCAM 244 kB

54

Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling

55

Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling

56

Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling

57

Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling

ECMP 58

Use Case: Load Balancing

59

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop

60

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop

Å Polling shows no difference
between ECMP and flowlets.

Å Reality: flowletshalve 90 pct
stddev

61

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Standard Deviation (us)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop Memcache

Å Polling shows no difference
between ECMP and flowlets.

Å Reality: flowletshalve 90 pct
stddev

62

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Standard Deviation (us)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop Memcache

Å Polling shows no difference
between ECMP and flowlets.

Å Reality: flowletshalve 90 pct
stddev

Å Polling consistently overestimates
imbalance

63

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Standard Deviation (us)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop Memcache

Averaging shows perfect balance in both cases

Å Polling shows no difference
between ECMP and flowlets.

Å Reality: flowletshalve 90 pct
stddev

Å Polling consistently overestimates
imbalance

64

Speedlight Summary

ÅUnsynchronized measurements can be misleading

ÅSpeedlight: A complete picture of the network

ÅCausal consistency

ÅApproximate synchrony (<RTT)

ÅWedge100BF-32X implementation

Åhttps:// github.com/eniac/Speedlight

65

https://github.com/eniac/Speedlight

THANK YOU

QUESTIONS AND COMMENTS

66

When We Go Too Fast

 10

 100

 1000

 10000

4 8 16 32 64

M
a
x
im

u
m

 R
a
te

 (
H

z
)

of Ports/Router

ÅLimited by number of Ports
ÅDetect Inconsistent/Incomplete Snapshots

67

