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Network Measurements

• Measurements are how we understand networks
• Operators: configuration, management and provisioning

• Architects: designing new protocols and topologies

• Researchers: measurement studies and evaluation

• Today’s measurement techniques
• Single device, e.g., counters, sampling

• Single path or packet, e.g., pings, INT, ECN
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A Case for Consistency

What is the reason for this packet drop?
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A Case for Consistency
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Congestion Poor Load Balancing

• Single Device: No relationship among measurements across time or devices.
• Single Path or Packet: No relationship among measurements across paths or packets. 

Existing tools fail to capture simultaneous behavior
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Our Goal

Truly simultaneous behavior is not possible
• Causal consistency, i.e., the set should make sense

• Near synchrony, i.e., it should be as close as 
possible to an actual state (<RTT)

A set of data-plane measurements that capture the state of the 
network at ~(single point in time)
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Speedlight
A set of data-plane measurements that capture the state of the 

network at ~(single point in time)
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Speedlight

• A P4-based system for Synchronized Network Snapshot
• Implemented on Wedge100BF

• Can capture network-wide state of any value accessible in the data 
plane

• Amenable to partial deployment 

• <100μs synchronization, even for large networks

A set of data-plane measurements that capture the state of the 
network at ~(single point in time)
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Outline

• Chandy - Lamport Algorithm.

• Challenges of taking Synchronized Network Snapshots. 

• Protocol

• Prototype Implementation

• Evaluation
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Global Network View

• Partition the network into pre- and post-snapshot
• e is pre-snapshot ⇒ all events that caused e are pre-snapshot
• E.g., receive and send of a message

Figure adapted from Linh T. X. Phan
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Chandy–Lamport (CL) Snapshots

• Messages carry the current SS#
• On seeing a message with a new SS# for the first time

• Node takes a local checkpoint
• Node attaches the new SS# to all subsequent messages

• On seeing a message with an old SS#
• Message was in-flight.  Update channel state.
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Challenges for Synchronized Network Snapshots
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Challenges for Synchronized Network Snapshots

1. CL provides no guarantee of synchrony
• We want something that’s close to an actual state

2. CL assumes single-threaded nodes, FIFO channels
• Modern networks are highly parallel – breaks consistency

3. CL assumes general purpose CPUs
• Switch data planes are extremely limited

• Switch CPUs are no better than remote hosts (wrt consistency)

30



Observer

Ensuring Synchrony
Challenge 1: Chandy- Lamport provides no guarantee of synchrony
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Observer

Ensuring Synchrony
Challenge 1: Chandy- Lamport provides no guarantee of synchrony
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• Router CPUs are synchronized via PTP



Observer Take SS# n at time t

• Router CPUs are synchronized via PTP

• User/Observer schedules a snapshot at every router

Ensuring Synchrony
Challenge 1: Chandy- Lamport provides no guarantee of synchrony
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Observer Take SS# n at time t
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• User/Observer schedules a snapshot at every router
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Observer Take SS# n at time t

• Router CPUs are synchronized via PTP

• User/Observer schedules a snapshot at every router
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Ensuring Synchrony
Challenge 1: Chandy- Lamport provides no guarantee of synchrony
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Challenge 2: CL assumes single-threaded nodes, FIFO channels
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Figure from P4 language Specification
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• Data plane snapshot on the level of individual processing 
units and priority channels
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Challenge 2: CL assumes single-threaded nodes, FIFO channels
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• Data plane snapshot on the level of individual processing 
units and priority channels

• Snapshot propagates even if CPU invocation is delayed
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Compensate for Data-plane Limitations
Challenge 3: CL assumes general purpose CPUs
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• Programmable ASICs are limited
• Limited programming model, registers and accesses

• Control plane compensates, for example:
• Detects snapshot completion

• Notifications

• Extract from RAM

• Lack of traffic
• Liveness

• Skipped snapshots

Compensate for Data-plane Limitations
Challenge 3: CL assumes general purpose CPUs
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Implementation and Evaluation
• Implemented on a Barefoot Wedge100BF-32X

• Control plane: ~2000 lines of Python

• Data plane: ~1000 lines of P4 (per variant)

• Evaluation
• How synchronized is Speedlight?

• What is the overhead?

• How does its results compare against current mechanism?
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How Synchronized is Speedlight?
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How Does Synchronization Scale?
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• Average synchronization in simulated network of 64-port routers
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• Average synchronization in simulated network of 64-port routers
• Number of routers only increases probability of hitting tail, not 

length of the tail 50



What’s the Overhead?

51



What’s the Overhead?

• No delays

• Network Overhead: 8 bytes per Packet
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Stateful ALUs 11
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What’s the Overhead?

• No delays

• Network Overhead: 8 bytes per Packet

Computational Resources

Stateless ALUs 24

Stateful ALUs 11

Memory Resources

SRAM 770 kB

TCAM 244 kB

54



Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling
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Use Case: Load Balancing
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Use Case: Load Balancing
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Averaging shows perfect balance in both cases

• Polling shows no difference 
between ECMP and flowlets.

• Reality: flowlets halve 90 pct
stddev

• Polling consistently overestimates 
imbalance
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Speedlight Summary

• Unsynchronized measurements can be misleading 

• Speedlight: A complete picture of the network

• Causal consistency

• Approximate synchrony (<RTT)

• Wedge100BF-32X implementation

• https://github.com/eniac/Speedlight
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When We Go Too Fast
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• Limited by number of Ports
• Detect Inconsistent/Incomplete Snapshots

67


