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Network Measurements



Network Measurements

* Measurements are how we understand networks
* Operators: configuration, management and provisioning
* Architects: designing new protocols and topologies
e Researchers: measurement studies and evaluation

* Today’s measurement techniques
* Single device, e.g., counters, sampling
* Single path or packet, e.g., pings, INT, ECN



A Case for Consistency




A Case for Consistency




A Case for Consistency

What is the reason for this packet drop?
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* Single Device: No relationship among measurements across time or devices.
* Single Path or Packet: No relationship among measurements across paths or packets.
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A Case for Consistency
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Existing tools fail to capture simultaneous behavior

* Single Device: No relationship among measurements across time or devices.
* Single Path or Packet: No relationship among measurements across paths or packets.
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Our Goal

A set of data-plane measurements that capture the state of the
network at ~(single point in time)

Truly simultaneous behavior is not possible
* Causal consistency, i.e., the set should make sense

* Near synchrony, i.e., it should be as close as
possible to an actual state (<RTT)
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Speedlight

A set of data-plane measurements that capture the state of the
network at ~(single point in time)
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Speedlight

A set of data-plane measurements that capture the state of the
network at ~(single point in time)

* A P4-based system for Synchronized Network Snapshot
* Implemented on Wedge100BF

* Can capture network-wide state of any value accessible in the data
plane

* Amenable to partial deployment
e <100us synchronization, even for large networks
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Outline

* Chandy - Lamport Algorithm.

* Challenges of taking Synchronized Network Snapshots.
* Protocol

* Prototype Implementation

e Evaluation



Global Network View
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* Partition the network into pre- and post-snapshot
* eis pre-snapshot = all events that caused e are pre-snapshot
e E.g., receive and send of a message
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* Partition the network into pre- and post-snapshot
* eis pre-snapshot = all events that caused e are pre-snapshot
e E.g., receive and send of a message
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* Partition the network into pre- and post-snapshot
* eis pre-snapshot = all events that caused e are pre-snapshot
e E.g., receive and send of a message
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Chandy—Lamport (CL) Snapshots
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* On seeing a message with a new SS# for the first time
* Node takes a local checkpoint
* Node attaches the new SS# to all subsequent messages

* On seeing a message with an old SS#
 Message was in-flight. Update channel state.
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Chandy—Lamport (CL) Snapshots
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* On seeing a message with an old SS#
 Message was in-flight. Update channel state.
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Challenges for Synchronized Network Snapshots

1. CL provides no guarantee of synchrony
* We want something that’s close to an actual state

2. CL assumes single-threaded nodes, FIFO channels
* Modern networks are highly parallel — breaks consistency

3. CL assumes general purpose CPUs
* Switch data planes are extremely limited
» Switch CPUs are no better than remote hosts (wrt consistency)
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Challenge 1: Chandy- Lamport provides no guarantee of synchrony
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Ensuring Synchrony

Challenge 1: Chandy- Lamport provides no guarantee of synchrony

[Observer] Take SS# n at time t

* Router CPUs are synchronized via PTP
* User/Observer schedules a snapshot at every router
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Ensuring Synchrony

Challenge 1: Chandy- Lamport provides no guarantee of synchrony

[Observer] Take SS# n at time t
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* Router CPUs are synchronized via PTP

* User/Observer schedules a snapshot at every router
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Ensuring Consistency

Challenge 2: CL assumes single-threaded nodes, FIFO channels
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Ensuring Consistency

Challenge 2: CL assumes single-threaded nodes, FIFO channels
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* Data plane snapshot on the level of individual processing
units and priority channels
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Challenge 2: CL assumes single-threaded nodes, FIFO channels

[Observer]

SS
}

* Data plane snapshot on the level of individual processing
units and priority channels

* Snapshot propagates even if CPU invocation is delayed
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Ensuring Consistency
clellaeqe 2: CL assumes single-threaded nodes, FIFO channels
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* Data plane snapshot on the level of individual processing
units and priority channels

* Snapshot propagates even if CPU invocation is delayed
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Compensate for Data-plane Limitations

Challenge 3: CL assumes general purpose CPUs



Compensate for Data-plane Limitations

Challenge 3: CL assumes general purpose CPUs

* Programmable ASICs are limited
* Limited programming model, registers and accesses

e Control plane compensates, for example:

* Detects snapshot completion
* Notifications
e Extract from RAM

* Lack of traffic

* Liveness
e Skipped snapshots



Implementation and Evaluation

* Implemented on a Barefoot Wedgel100BF-32X
* Control plane: ~2000 lines of Python
e Data plane: ~1000 lines of P4 (per variant)

e Evaluation

 How synchronized is Speedlight?
* What is the overhead?
* How does its results compare against current mechanism?
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How Synchronized is Speedlight?
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How Does Synchronization Scale?
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* Average synchronization in simulated network of 64-port routers
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How Does Synchronization Scale?
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* Average synchronization in simulated network of 64-port routers
 Number of routers only increases probability of hitting tail, not
length of the tail
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What’s the Overhead?

* No delays
* Network Overhead: 8 bytes per Packet



What’s the Overhead?

* No delays
* Network Overhead: 8 bytes per Packet

Computational Resources

Stateless ALUs 24
Stateful ALUs 11
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What’s the Overhead?

* No delays
* Network Overhead: 8 bytes per Packet

Computational Resources

Stateless ALUs 24
Stateful ALUs 11
SRAM 770 kB

TCAM 244 kB



Use Case: Synchronized Traffic - GraphX
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Speedlight Summary

® Unsynchronized measurements can be misleading

® Speedlight: A complete picture of the network

® Causal consistency
® Approximate synchrony (<RTT)
® Wedgel00BF-32X implementation

® https://github.com/eniac/Speedlight
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When We Go Too Fast

10000 ¢
"\T C
L k
)

2 1000 |
ke k
- i
= 100 |
©

2 L

10

4 8 16 32
# of Ports/Router

* Limited by number of Ports
* Detect Inconsistent/Incomplete Snapshots
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