
SpeedLight: Synchronized
Network Snapshots

Nofel Yaseen, John Sonchack, Vincent Liu

1

Network Measurements

2

Network Measurements

• Measurements are how we understand networks
• Operators: configuration, management and provisioning

• Architects: designing new protocols and topologies

• Researchers: measurement studies and evaluation

• Today’s measurement techniques
• Single device, e.g., counters, sampling

• Single path or packet, e.g., pings, INT, ECN

3

A Case for Consistency

A B

X Y

4

A Case for Consistency

A B

X Y

5

A Case for Consistency

What is the reason for this packet drop?

A B

X Y

6

A Case for Consistency

7

A Case for Consistency

8

A Case for Consistency

9

Congestion

A Case for Consistency

10

Congestion Poor Load Balancing

A Case for Consistency

11

Congestion Poor Load Balancing

• Single Device: No relationship among measurements across time or devices.

A Case for Consistency

12

Congestion Poor Load Balancing

• Single Device: No relationship among measurements across time or devices.

A Case for Consistency

13

Congestion Poor Load Balancing

• Single Device: No relationship among measurements across time or devices.
• Single Path or Packet: No relationship among measurements across paths or packets.

A Case for Consistency

14

Congestion Poor Load Balancing

• Single Device: No relationship among measurements across time or devices.
• Single Path or Packet: No relationship among measurements across paths or packets.

Existing tools fail to capture simultaneous behavior

Our Goal

15

Our Goal

Truly simultaneous behavior is not possible
• Causal consistency, i.e., the set should make sense

• Near synchrony, i.e., it should be as close as
possible to an actual state (<RTT)

A set of data-plane measurements that capture the state of the
network at ~(single point in time)

16

Speedlight
A set of data-plane measurements that capture the state of the

network at ~(single point in time)

17

Speedlight

• A P4-based system for Synchronized Network Snapshot
• Implemented on Wedge100BF

• Can capture network-wide state of any value accessible in the data
plane

• Amenable to partial deployment

• <100μs synchronization, even for large networks

A set of data-plane measurements that capture the state of the
network at ~(single point in time)

18

Outline

• Chandy - Lamport Algorithm.

• Challenges of taking Synchronized Network Snapshots.

• Protocol

• Prototype Implementation

• Evaluation

19

Global Network View

• Partition the network into pre- and post-snapshot
• e is pre-snapshot ⇒ all events that caused e are pre-snapshot
• E.g., receive and send of a message

Figure adapted from Linh T. X. Phan

Event B0 Event B1 Event B2 Event B3

Event A0 Event A1 Event A2 Event A3

A

B

20

Global Network View

• Partition the network into pre- and post-snapshot
• e is pre-snapshot ⇒ all events that caused e are pre-snapshot
• E.g., receive and send of a message

Figure adapted from Linh T. X. Phan

Event B0 Event B1 Event B2 Event B3

Event A0 Event A1 Event A2 Event A3

A

B

Inconsistent cut

21

Global Network View

• Partition the network into pre- and post-snapshot
• e is pre-snapshot ⇒ all events that caused e are pre-snapshot
• E.g., receive and send of a message

Figure adapted from Linh T. X. Phan

Event B0 Event B1 Event B2 Event B3

Event A0 Event A1 Event A2 Event A3

A

B

Inconsistent cut Consistent cut

22

Chandy–Lamport (CL) Snapshots

• Messages carry the current SS#
• On seeing a message with a new SS# for the first time

• Node takes a local checkpoint
• Node attaches the new SS# to all subsequent messages

• On seeing a message with an old SS#
• Message was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1

23

Chandy–Lamport (CL) Snapshots

• Messages carry the current SS#
• On seeing a message with a new SS# for the first time

• Node takes a local checkpoint
• Node attaches the new SS# to all subsequent messages

• On seeing a message with an old SS#
• Message was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1

24

Chandy–Lamport (CL) Snapshots

• Messages carry the current SS#
• On seeing a message with a new SS# for the first time

• Node takes a local checkpoint
• Node attaches the new SS# to all subsequent messages

• On seeing a message with an old SS#
• Message was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1
SS# 2

25

Chandy–Lamport (CL) Snapshots

• Messages carry the current SS#
• On seeing a message with a new SS# for the first time

• Node takes a local checkpoint
• Node attaches the new SS# to all subsequent messages

• On seeing a message with an old SS#
• Message was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1
SS# 2

26

Chandy–Lamport (CL) Snapshots

• Messages carry the current SS#
• On seeing a message with a new SS# for the first time

• Node takes a local checkpoint
• Node attaches the new SS# to all subsequent messages

• On seeing a message with an old SS#
• Message was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1
SS# 2

SS# 2

27

Chandy–Lamport (CL) Snapshots

• Messages carry the current SS#
• On seeing a message with a new SS# for the first time

• Node takes a local checkpoint
• Node attaches the new SS# to all subsequent messages

• On seeing a message with an old SS#
• Message was in-flight. Update channel state.

A

B

C

Figure adapted from Linh T. X. Phan

SS# 1

SS# 1

SS# 1
SS# 2

SS# 2

SS# 2

28

Challenges for Synchronized Network Snapshots

29

Challenges for Synchronized Network Snapshots

1. CL provides no guarantee of synchrony
• We want something that’s close to an actual state

2. CL assumes single-threaded nodes, FIFO channels
• Modern networks are highly parallel – breaks consistency

3. CL assumes general purpose CPUs
• Switch data planes are extremely limited

• Switch CPUs are no better than remote hosts (wrt consistency)

30

Observer

Ensuring Synchrony
Challenge 1: Chandy- Lamport provides no guarantee of synchrony

31

Observer

Ensuring Synchrony
Challenge 1: Chandy- Lamport provides no guarantee of synchrony

32

• Router CPUs are synchronized via PTP

Observer Take SS# n at time t

• Router CPUs are synchronized via PTP

• User/Observer schedules a snapshot at every router

Ensuring Synchrony
Challenge 1: Chandy- Lamport provides no guarantee of synchrony

33

Observer Take SS# n at time t

• Router CPUs are synchronized via PTP

• User/Observer schedules a snapshot at every router

CPU

ASIC

Ensuring Synchrony
Challenge 1: Chandy- Lamport provides no guarantee of synchrony

34

Observer Take SS# n at time t

• Router CPUs are synchronized via PTP

• User/Observer schedules a snapshot at every router

CPU

ASIC

Ensuring Synchrony
Challenge 1: Chandy- Lamport provides no guarantee of synchrony

35

Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency

Observer

CPU

Figure from P4 language Specification

36

Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency

Observer

CPU

37

• Data plane snapshot on the level of individual processing
units and priority channels

Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency

Observer

CPU

• Data plane snapshot on the level of individual processing
units and priority channels

• Snapshot propagates even if CPU invocation is delayed 38

Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency

Observer

CPU

• Data plane snapshot on the level of individual processing
units and priority channels

• Snapshot propagates even if CPU invocation is delayed

Ethernet

IP

Snapshot

TCP/UDP

Data

39

Compensate for Data-plane Limitations
Challenge 3: CL assumes general purpose CPUs

40

• Programmable ASICs are limited
• Limited programming model, registers and accesses

• Control plane compensates, for example:
• Detects snapshot completion

• Notifications

• Extract from RAM

• Lack of traffic
• Liveness

• Skipped snapshots

Compensate for Data-plane Limitations
Challenge 3: CL assumes general purpose CPUs

41

Implementation and Evaluation
• Implemented on a Barefoot Wedge100BF-32X

• Control plane: ~2000 lines of Python

• Data plane: ~1000 lines of P4 (per variant)

• Evaluation
• How synchronized is Speedlight?

• What is the overhead?

• How does its results compare against current mechanism?

42

Implementation and Evaluation
• Implemented on a Barefoot Wedge100BF-32X

• Control plane: ~2000 lines of Python

• Data plane: ~1000 lines of P4 (per variant)

• Evaluation
• How synchronized is Speedlight?

• What is the overhead?

• How does its results compare against current mechanism?

43

How Synchronized is Speedlight?

44

How Synchronized is Speedlight?

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Synchronization (us)

Speedlight Polling

45

How Synchronized is Speedlight?

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Synchronization (us)

Speedlight Polling

Median: 6.4μs

46

How Synchronized is Speedlight?

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Synchronization (us)

Speedlight Polling

Median: 6.4μs Median: 3500 μs

47

How Does Synchronization Scale?

48

How Does Synchronization Scale?

 0

 20

 40

 60

 80

 100

10 100 1000 10000

S
y
n

c
h
ro

n
iz

a
ti
o

n
 (

u
s
)

Number of Routers

49

• Average synchronization in simulated network of 64-port routers

How Does Synchronization Scale?

 0

 20

 40

 60

 80

 100

10 100 1000 10000

S
y
n

c
h
ro

n
iz

a
ti
o

n
 (

u
s
)

Number of Routers

• Average synchronization in simulated network of 64-port routers
• Number of routers only increases probability of hitting tail, not

length of the tail 50

What’s the Overhead?

51

What’s the Overhead?

• No delays

• Network Overhead: 8 bytes per Packet

52

What’s the Overhead?

• No delays

• Network Overhead: 8 bytes per Packet

Computational Resources

Stateless ALUs 24

Stateful ALUs 11

53

What’s the Overhead?

• No delays

• Network Overhead: 8 bytes per Packet

Computational Resources

Stateless ALUs 24

Stateful ALUs 11

Memory Resources

SRAM 770 kB

TCAM 244 kB

54

Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling

55

Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling

56

Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling

57

Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling

ECMP 58

Use Case: Load Balancing

59

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop

60

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop

• Polling shows no difference
between ECMP and flowlets.

• Reality: flowlets halve 90 pct
stddev

61

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Standard Deviation (us)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop Memcache

• Polling shows no difference
between ECMP and flowlets.

• Reality: flowlets halve 90 pct
stddev

62

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Standard Deviation (us)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop Memcache

• Polling shows no difference
between ECMP and flowlets.

• Reality: flowlets halve 90 pct
stddev

• Polling consistently overestimates
imbalance

63

Use Case: Load Balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Standard Deviation (ms)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Standard Deviation (us)

ECMP Polling
ECMP Snapshots

Flowlet Polling
Flowlet Snapshots

Hadoop Memcache

Averaging shows perfect balance in both cases

• Polling shows no difference
between ECMP and flowlets.

• Reality: flowlets halve 90 pct
stddev

• Polling consistently overestimates
imbalance

64

Speedlight Summary

• Unsynchronized measurements can be misleading

• Speedlight: A complete picture of the network

• Causal consistency

• Approximate synchrony (<RTT)

• Wedge100BF-32X implementation

• https://github.com/eniac/Speedlight

65

https://github.com/eniac/Speedlight

THANK YOU

QUESTIONS AND COMMENTS

66

When We Go Too Fast

 10

 100

 1000

 10000

4 8 16 32 64

M
a
x
im

u
m

 R
a
te

 (
H

z
)

of Ports/Router

• Limited by number of Ports
• Detect Inconsistent/Incomplete Snapshots

67

