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Network Measurements
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Network Measurements

ÅMeasurements are how we understand networks
ÅOperators: configuration, management and provisioning

ÅArchitects: designing new protocols and topologies

ÅResearchers: measurement studies and evaluation

ÅToday’s measurement techniques
ÅSingle device, e.g., counters, sampling

ÅSingle path or packet, e.g., pings, INT, ECN
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A Case for Consistency

What is the reason for this packet drop?
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A Case for Consistency
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Congestion Poor Load Balancing

ÅSingle Device: No relationship among measurements across time or devices.
ÅSingle Path or Packet: No relationship among measurements across paths or packets. 

Existing tools fail to capture simultaneous behavior
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15



Our Goal

Truly simultaneous behavior is not possible
ÅCausal consistency, i.e., the set should make sense

ÅNear synchrony, i.e., it should be as close as 
possible to an actual state (<RTT)

A set of data-plane measurements that capture the state of the 
network at ~(single point in time)
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Speedlight
A set of data-plane measurements that capture the state of the 

network at ~(single point in time)
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Speedlight

ÅA P4-based system for Synchronized Network Snapshot
ÅImplemented on Wedge100BF

ÅCan capture network-wide state of any value accessible in the data 
plane

ÅAmenable to partial deployment 

Å<100μs synchronization, even for large networks

A set of data-plane measurements that capture the state of the 
network at ~(single point in time)
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Outline

ÅChandy- LamportAlgorithm.

ÅChallenges of taking Synchronized Network Snapshots. 

ÅProtocol

ÅPrototype Implementation

ÅEvaluation
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Global Network View

ÅPartition the network into pre- and post-snapshot
Åe is pre-snapshot ᵼall events that caused e are pre-snapshot
ÅE.g., receive and send of a message

Figure adapted from Linh T. X. Phan
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Chandy–Lamport (CL) Snapshots

ÅMessages carry the current SS#
ÅOn seeing a message with a new SS# for the first time
ÅNode takes a local checkpoint
ÅNode attaches the new SS# to all subsequent messages

ÅOn seeing a message with an old SS#
ÅMessage was in-flight.  Update channel state.
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Figure adapted from Linh T. X. Phan
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Challenges for Synchronized Network Snapshots
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Challenges for Synchronized Network Snapshots

1. CL provides no guarantee of synchrony
ÅWe want something that’s close to an actual state

2. CL assumes single-threaded nodes, FIFO channels
ÅModern networks are highly parallel –breaks consistency

3. CL assumes general purpose CPUs
ÅSwitch data planes are extremely limited

ÅSwitch CPUs are no better than remote hosts (wrt consistency)
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Observer

Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony
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Observer

Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony
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ÅRouter CPUs are synchronized via PTP



Observer Take SS# n at time t

ÅRouter CPUs are synchronized via PTP

ÅUser/Observer schedules a snapshot at everyrouter

Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony
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Observer Take SS# n at time t

ÅRouter CPUs are synchronized via PTP

ÅUser/Observer schedules a snapshot at everyrouter

CPU

ASIC

Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony

34



Observer Take SS# n at time t

ÅRouter CPUs are synchronized via PTP
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Ensuring Synchrony
Challenge 1: Chandy- Lamportprovides no guarantee of synchrony
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Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency
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Figure from P4 language Specification
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ÅData plane snapshot on the level of individual processing 
units and priority channels
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Challenge 2: CL assumes single-threaded nodes, FIFO channels

ASIC

Ensuring Consistency

Observer

CPU

ÅData plane snapshot on the level of individual processing 
units and priority channels

ÅSnapshot propagates even if CPU invocation is delayed

Ethernet

IP

Snapshot

TCP/UDP

Data
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Compensate for Data-plane Limitations
Challenge 3: CL assumes general purpose CPUs
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ÅProgrammable ASICs are limited
ÅLimited programming model, registers and accesses

ÅControl plane compensates, for example:
ÅDetects snapshot completion
ÅNotifications

ÅExtract from RAM

ÅLack of traffic
ÅLiveness

ÅSkipped snapshots

Compensate for Data-plane Limitations
Challenge 3: CL assumes general purpose CPUs
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Implementation and Evaluation
ÅImplemented on a Barefoot Wedge100BF-32X
ÅControl plane: ~2000 lines of Python

ÅData plane: ~1000 lines of P4 (per variant)

ÅEvaluation
ÅHow synchronized is Speedlight?

ÅWhat is the overhead?

ÅHow does its results compare against current mechanism?
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How Synchronized is Speedlight?

44



How Synchronized is Speedlight?

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Synchronization (us)

Speedlight Polling

45



How Synchronized is Speedlight?

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Synchronization (us)

Speedlight Polling

Median: 6.4μs

46



How Synchronized is Speedlight?
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How Does Synchronization Scale?
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ÅAverage synchronization in simulated network of 64-port routers
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ÅAverage synchronization in simulated network of 64-port routers
ÅNumber of routers only increases probability of hitting tail, not 

length of the tail 50



What’s the Overhead?
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What’s the Overhead?

ÅNo delays

ÅNetwork Overhead: 8 bytes per Packet
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ÅNo delays

ÅNetwork Overhead: 8 bytes per Packet

ComputationalResources

Stateless ALUs 24

StatefulALUs 11
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What’s the Overhead?

ÅNo delays

ÅNetwork Overhead: 8 bytes per Packet

ComputationalResources

Stateless ALUs 24

StatefulALUs 11

Memory Resources

SRAM 770 kB

TCAM 244 kB
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Use Case: Synchronized Traffic - GraphX

SpeedLight Snapshots Polling
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Use Case: Load Balancing
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Use Case: Load Balancing
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Averaging shows perfect balance in both cases

Å Polling shows no difference 
between ECMP and flowlets.

Å Reality: flowletshalve 90 pct
stddev

Å Polling consistently overestimates 
imbalance

64



Speedlight Summary

ÅUnsynchronized measurements can be misleading 

ÅSpeedlight: A complete picture of the network

ÅCausal consistency

ÅApproximate synchrony (<RTT)

ÅWedge100BF-32X implementation

Åhttps:// github.com/eniac/Speedlight
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When We Go Too Fast
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ÅLimited by number of Ports
ÅDetect Inconsistent/Incomplete Snapshots
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