SpeedLight: Synchronized
Network Snapshots

Nofel Yaseen, John Sonchack, Vincent Liu

Penn

UNIVERSITY 0f PENNSYLVANIA

Network Measurements

Network Measurements

* Measurements are how we understand networks
* Operators: configuration, management and provisioning
* Architects: designing new protocols and topologies
e Researchers: measurement studies and evaluation

* Today’s measurement techniques
* Single device, e.g., counters, sampling
* Single path or packet, e.g., pings, INT, ECN

A Case for Consistency

A Case for Consistency

A Case for Consistency

What is the reason for this packet drop?

A Case for Consistency

t t
<SS LB
3

A Case for Consistency

B & B
T/ L]

A@ B@ A% B@

A Case for Consistency

B & B
T/ L]

A@ B@ A% B@

Congestion

A Case for Consistency

T/Y,@l

@ @

A Case for Consistency

I/@ L ?/%'l

I

Congestio Poor Load Balancin

* Single Device: No relationship among measurements across time or devices.

A Case for Consistency

"4

T/®l $ 2

I

Congestio Poor Load Balancin

* Single Device: No relationship among measurements across time or devices.

A Case for Consistency

s B

A@ B@ A@ B@
¢ T ¢ T

S Ve

Congestion Poor Load Balancing

* Single Device: No relationship among measurements across time or devices.
* Single Path or Packet: No relationship among measurements across paths or packets.

13

A Case for Consistency

1 1
< S
L —]

N

Existing tools fail to capture simultaneous behavior

* Single Device: No relationship among measurements across time or devices.
* Single Path or Packet: No relationship among measurements across paths or packets.

14

Our Goal

Our Goal

A set of data-plane measurements that capture the state of the
network at ~(single point in time)

Truly simultaneous behavior is not possible
* Causal consistency, i.e., the set should make sense

* Near synchrony, i.e., it should be as close as
possible to an actual state (<RTT)

16

Speedlight

A set of data-plane measurements that capture the state of the
network at ~(single point in time)

17

Speedlight

A set of data-plane measurements that capture the state of the
network at ~(single point in time)

* A P4-based system for Synchronized Network Snapshot
* Implemented on Wedge100BF

* Can capture network-wide state of any value accessible in the data
plane

* Amenable to partial deployment
e <100us synchronization, even for large networks

18

Outline

* Chandy - Lamport Algorithm.

* Challenges of taking Synchronized Network Snapshots.
* Protocol

* Prototype Implementation

e Evaluation

Global Network View

' — Event AO Event Al Event A2 Event A3
(AL o 0 >
i 44@3 Q"
Sa G
8o @
Z 50
4 9
&
X
’@Z] L >
i Event BO Event B1 Event B2 Event B3

* Partition the network into pre- and post-snapshot
* eis pre-snapshot = all events that caused e are pre-snapshot
e E.g., receive and send of a message

20

Global Network View

'Eﬁ Event AO 7/ Event Al Event A2 Event A3
(AE ! 0 >
4 \ 44@3 v
\ S356 f
S e _ ,;,z?"
- &
S <
5])
GZ N \‘ o s
- Event BO Event B1 Event B2 Event B3

Inconsistent cut

* Partition the network into pre- and post-snapshot
* eis pre-snapshot = all events that caused e are pre-snapshot
e E.g., receive and send of a message

21

Global Network View

v

’Eﬁ Event AO 7/ Event Al Event A2
7 2

- \
L . e,
~ Q
N -
N
25)
92 [\ = .,

- \

Event BO Event B1 \ Event B2 Event B3 \

| |
Inconsistent cut Consistent cut

* Partition the network into pre- and post-snapshot
* eis pre-snapshot = all events that caused e are pre-snapshot
e E.g., receive and send of a message

22

Chandy—Lamport (CL) Snapshots
’Qﬁi SS# 1

'@i SS# 1 \

'Gﬁ_i Ss# 1
W=

 Messages carry the current SS#

* On seeing a message with a new SS# for the first time
* Node takes a local checkpoint
* Node attaches the new SS# to all subsequent messages

* On seeing a message with an old SS#
 Message was in-flight. Update channel state.

Chandy—Lamport (CL) Snapshots
’Qﬁi SS# 1

'@i SS# 1 \

'Gﬁ_i Ss# 1
W=

 Messages carry the current SS#

* On seeing a message with a new SS# for the first time
* Node takes a local checkpoint
* Node attaches the new SS# to all subsequent messages

* On seeing a message with an old SS#
 Message was in-flight. Update channel state.

Chandy—Lamport (CL) Snapshots

| =] ss#1 R
[5] Ss#1 R
o*
’Gﬁi o SS# 2 B
ié

 Messages carry the current SS#

* On seeing a message with a new SS# for the first time
* Node takes a local checkpoint
 Node attaches the new SS# to all subsequent messages

* On seeing a message with an old SS#

 Message was in-flight. Update channel state.
25

Chandy—Lamport (CL) Snapshots

'QE% St 1 .

'@i SS# 1 N
« //\\

'@E___ij o SS# 2 B
&

 Messages carry the current SS#

* On seeing a message with a new SS# for the first time
* Node takes a local checkpoint
* Node attaches the new SS# to all subsequent messages

* On seeing a message with an old SS#
 Message was in-flight. Update channel state.

26

Chandy—Lamport (CL) Snapshots

'QE% St 1 .

SS# 2
' § SS# 1 N
- //\\
’Gﬁi o SS# 2 B
& =

 Messages carry the current SS#

* On seeing a message with a new SS# for the first time
* Node takes a local checkpoint
* Node attaches the new SS# to all subsequent messages

* On seeing a message with an old SS#
 Message was in-flight. Update channel state.

27

Chandy—Lamport (CL) Snapshots

’QE%' SS# 1 il

i —

i —

L] ss#1 o 2//\\\
i —

 Messages carry the current SS#

* On seeing a message with a new SS# for the first time
* Node takes a local checkpoint
* Node attaches the new SS# to all subsequent messages

* On seeing a message with an old SS#
 Message was in-flight. Update channel state.

28

Challenges for Synchronized Network Snapshots

Challenges for Synchronized Network Snapshots

1. CL provides no guarantee of synchrony
* We want something that’s close to an actual state

2. CL assumes single-threaded nodes, FIFO channels
* Modern networks are highly parallel — breaks consistency

3. CL assumes general purpose CPUs
* Switch data planes are extremely limited
» Switch CPUs are no better than remote hosts (wrt consistency)

Ensuring Synchrony

Challenge 1: Chandy- Lamport provides no guarantee of synchrony

[Observer]

Ensuring Synchrony

Challenge 1: Chandy- Lamport provides no guarantee of synchrony

[Observer]

* Router CPUs are synchronized via PTP

Ensuring Synchrony

Challenge 1: Chandy- Lamport provides no guarantee of synchrony

[Observer] Take SS# n at time t

* Router CPUs are synchronized via PTP
* User/Observer schedules a snapshot at every router

33

Ensuring Synchrony

Challenge 1: Chandy- Lamport provides no guarantee of synchrony

[Observer] Take SS# n at time t

7 A\\ ' CPU

ST &
O

* Router CPUs are synchronized via PTP
* User/Observer schedules a snapshot at every router

Ensuring Synchrony

Challenge 1: Chandy- Lamport provides no guarantee of synchrony

[Observer] Take SS# n at time t

A

CPU

S &
SO

4

ASIC

* Router CPUs are synchronized via PTP

* User/Observer schedules a snapshot at every router

35

Ensuring Consistency

Challenge 2: CL assumes single-threaded nodes, FIFO channels

[Observer]

CPU

ASIC

Ensuring Consistency

Challenge 2: CL assumes single-threaded nodes, FIFO channels

[Observer]

SS
}

* Data plane snapshot on the level of individual processing
units and priority channels

37

Ensuring Consistency

Challenge 2: CL assumes single-threaded nodes, FIFO channels

[Observer]

SS
}

* Data plane snapshot on the level of individual processing
units and priority channels

* Snapshot propagates even if CPU invocation is delayed

38

Ensuring Consistency
clellaeqe 2: CL assumes single-threaded nodes, FIFO channels
Ethernet
P [Observer]
Snapshot
TCP/UDP]
Data

SS
}

* Data plane snapshot on the level of individual processing
units and priority channels

* Snapshot propagates even if CPU invocation is delayed

39

Compensate for Data-plane Limitations

Challenge 3: CL assumes general purpose CPUs

Compensate for Data-plane Limitations

Challenge 3: CL assumes general purpose CPUs

* Programmable ASICs are limited
* Limited programming model, registers and accesses

e Control plane compensates, for example:

* Detects snapshot completion
* Notifications
e Extract from RAM

* Lack of traffic

* Liveness
e Skipped snapshots

Implementation and Evaluation

* Implemented on a Barefoot Wedgel100BF-32X
* Control plane: ~2000 lines of Python
e Data plane: ~1000 lines of P4 (per variant)

e Evaluation

 How synchronized is Speedlight?
* What is the overhead?
* How does its results compare against current mechanism?

Implementation and Evaluation

* Implemented on a Barefoot Wedgel100BF-32X
* Control plane: ~2000 lines of Python
e Data plane: ~1000 lines of P4 (per variant)

e Evaluation

 How synchronized is Speedlight?
* What is the overhead?
* How does its results compare against current mechanism?

Switon [IIEL 0
J

Servers [_L@

How Synchronized is Speedlight?

How Synchronized is Speedlight?

1

0.8

0.6

CDF

0.4

0.2

10

—Speedlight —Polling

100
Synchronization (us)

1000

10000

45

How Synchronized is Speedlight?

0.8

0.6

CDF

0.4

0.2

—Speedlight —Polling

<4—— Median: 6.4us

10 100 1000 10000

Synchronization (us)
46

How Synchronized is Speedlight?

0.8

0.6

CDF

0.4

0.2

—Speedlight —Polling

<4—— Median: 6.4us *1— Median: 3500 us

10 100 1000 10000
Synchronization (us)

47

How Does Synchronization Scale?

How Does Synchronization Scale?

100 ¢
F)
= 80}
-
o
= 60 |
N
S 40 |
c
e 20t
>
@p)]

0

10 100 1000 10000
Number of Routers

* Average synchronization in simulated network of 64-port routers

49

How Does Synchronization Scale?

100 ¢
F)
= 80}
-
o
= 60 |
N
S 40 |
c
e 20t
>
@p)]

0

10 100 1000 10000
Number of Routers

* Average synchronization in simulated network of 64-port routers
 Number of routers only increases probability of hitting tail, not
length of the tail

50

What’s the Overhead?

What’s the Overhead?

* No delays
* Network Overhead: 8 bytes per Packet

What’s the Overhead?

* No delays
* Network Overhead: 8 bytes per Packet

Computational Resources

Stateless ALUs 24
Stateful ALUs 11

53

What’s the Overhead?

* No delays
* Network Overhead: 8 bytes per Packet

Computational Resources

Stateless ALUs 24
Stateful ALUs 11
SRAM 770 kB

TCAM 244 kB

Use Case: Synchronized Traffic - GraphX

Host Ports

Network Ports

Network Ports
6 8 10 12

Host Ports Network Ports Host Ports
O 2 4 6 8 10 12 0O 2 4
| | | | | | Il-o -Ig 0 | |
- g
+ 2 -
- 3
T 4-

NetwoLk Ports
o

JpeeaLignit ondpsnouw roumng

55

Use Case: Synchronized Traffic - GraphX

Host Ports Network Ports
2 4 6 8 10 12

Host Ports Network Ports
O 2 4 6 8 10 12

Host Ports
Host Ports

Network Ports
Network Ports

SpeedLight Snapshots Polling

56

Use Case: Synchronized Traffic - GraphX

Host Ports Network Ports Host Ports Network Ports
0O 2 4 6 8 10 12 0O 2 4 6 8 10 12

.Ig]]]]]] Il-o -Ig]]]]]]

Q Q

a - a_

4 S

0n n

e ' e

T I

Network Ports
Network Ports

SpeedLight Snapshots Polling

57

Use Case: Synchronized Traffic - GraphX

Host Ports

Network Ports

Host Ports Network Ports
0O 2 4 6 8 10 12

SpeedLight Snapshots

Host Ports Network Ports
O 2 4 6 8 10 12

1

;|

Host Ports
N

-

NetwoLk Ports
o

Polling
ECMP 58

Use Case: Load Balancing

Use Case: Load Balancing

LL
a)
O 04 ECMP Polling -- - - -
ECMP Snapshots
0.2 } Flowlet Polling -- - - -

Flovylet Snapshots ‘

0 50 100 150 200 250
Standard Deviation (ms)

Use Case: Load Balancing

LL
a)
O 04 ECMP Polling -- - - -
ECMP Snapshots
0.2 } Flowlet Polling -----

Flovylet Snapshots ‘

0 50 100 150 200 250
Standard Deviation (ms)

* Polling shows no difference
between ECMP and flowlets.

* Reality: flowlets halve 90 pct
stddev

Use Case: Load Balancing

LL
&)
O 04 ECMP Polling -- - - -
ECMP Snapshots
0.2 § Flowlet Polling - ----
0 ~ Flowlet Snapshots -

0 50 100 150

200

Standard Deviation (ms)

* Polling shows no difference
between ECMP and flowlets.
* Reality: flowlets halve 90 pct

stddev

CDF

Memcache
L S — ==
0.8
0.6
04 r ECMP Polling -----
ECMP Snapshots
0.2 Flowlet Polling -----

Flovylet Snapshots

0 20 40 60 80 100
Standard Deviation (us)

Use Case: Load Balancing

Memcache
O — 7
0.8 | a
L LL 0.6
a) a)
© 04 ECMP Polling ---- - © 04t ECMP Polling - - - - -
ECMP Snapshots ECMP Snapshots
0.2 § Flowlet Polling ----- 0.2 Flowlet Polling ---- -
0 ~ Flowlet Snapshots - | 0 ~ Flowlet Snapshots - |
0 50 100 150 200 250 0 20 40 60 80 100
Standard Deviation (ms) Standard Deviation (us)
* Polling shows no difference * Polling consistently overestimates
between ECMP and flowlets. imbalance

* Reality: flowlets halve 90 pct
stddev

Use Case: Load Balancing

Memcache
O — a7
0.8 | r e o
L LL 0.6
a) a)
© 04 ECMP Polling ----- © 04} ECMP Polling - - - - -
ECMP Snapshots ECMP Snapshots
0.2 § Flowlet Polling ----- 0.2 Flowlet Polling ---- -
0 ~ Flowlet Snapshots - | 0 ~ Flowlet Snapshots - |
0 50 100 150 200 250 0 20 40 60 80 100
Standard Deviation (ms) Standard Deviation (us)
* Polling shows no difference * Polling consistently overestimates
between ECMP and flowlets. imbalance
e Reality: flowlets halve 90 pct

stddev
Averaging shows perfect balance in both cases o

Speedlight Summary

® Unsynchronized measurements can be misleading

® Speedlight: A complete picture of the network

® Causal consistency
® Approximate synchrony (<RTT)
® Wedgel00BF-32X implementation

® https://github.com/eniac/Speedlight

65

https://github.com/eniac/Speedlight

THANK YOU
QUESTIONS AND COMMENTS

When We Go Too Fast

10000 ¢
"\T C
L k
)

2 1000 |
ke k
- i
= 100 |
©

2 L

10

4 8 16 32
of Ports/Router

* Limited by number of Ports
* Detect Inconsistent/Incomplete Snapshots

64

67

