Enabling Deep-Tissue Networking for Miniature Medical Devices

Yunfei Ma

Zhihong Luo, Christoph Steiger, Giovanni Traverso and Fadel Adib

Wireless signals die exponentially in the human body

Wireless signals die exponentially in the human body

Signals decay more than 1000x faster inside the body than in air

Cannot power up battery-less sensor in deep tissues

In-Vivo Networking (IVN)

 System that enables networking with deep-tissue batteryfree medical sensors from a distance.

 Introduce a new technology that can power and communicate in deep tissues and deal with anatomical constraints like tissue losses.

 Implemented and evaluated with different tissues and in real living animals.

Continuous and Long-Term Drug Delivery

In-body Sensing and Diagnosis

Deep brain sensing and stimulation

Wireless signals die exponentially in the human body

Wireless signals die exponentially in the human body

Wireless signals die exponentially in the human body

The sensor will not power up unless the instantaneous energy is above a threshold

Because of non-linear electronics (e.g., diodes, transistors), a batteryfree sensor needs a minimum energy to power up

threshold => can't power up

threshold => powers up

TX power is limited by FCC regulations and device properties

TX power is limited by FCC regulations and device properties

TX power is limited by FCC regulations and device properties

With single antenna, power is transmitted in all directions => Inefficient

Constructive interference enables MIMO to achieve N² times power gain over a single antenna

Constructive interference enables MIMO to achieve N² times power gain over a single antenna

Problem: MIMO requires knowing the wireless channel (i.e., exactly how signals travel)

 TX_N

 Signals travel at different speeds in different tissues

 Signals reflect off organs, change angles, undergo diffraction.

Cannot estimate the channel because need to power up deep-tissue sensor in the first place

How can we power and communicate with sensors in deep tissues despite unpredictable channels?

Solution: IVN introduces beamforming technology that can work under blind wireless channels

IVN beamforming

MIMO compensates signal by knowing the channel

IVN beamforming

MIMO compensates signal by knowing the channel

IVN beamforming

MIMO compensates signal by knowing the channel

Signal misalignment cannot be compensated

Signal misalignment cannot be compensated

Signal misalignment cannot be compensated

IVN beamforming

IVN beamforming

Apply constant multiplier (phase shift)

Add
destructively

Apply time-varying multiplier (frequency shift)

Apply constant multiplier (phase shift)

Apply time-varying multiplier (frequency shift)

Apply constant multiplier (phase shift)

Apply time-varying multiplier (frequency shift)

IVN beamforming

IVN beamforming

Signal misalignment cannot be compensated

Signal misalignment cannot be compensated

Signal misalignment cannot be compensated

Power boosting at a particular time

Apply constant multiplier (phase shift)

IVN beamforming

Apply constant multiplier (phase shift)

IVN beamforming

Apply constant multiplier (phase shift)

IVN beamforming

Apply constant multiplier (phase shift)

$\begin{array}{c} \alpha \\ h_1 \\ TX_1 \\ \end{array}$ $\begin{array}{c} h_2 \\ TX_2 \\ \end{array}$

$$y = \alpha h_1 + \beta h_2$$

IVN beamforming

Apply constant multiplier (phase shift)

α TX_1 h_1 TX_2 β

$$y = \alpha h_1 + \beta h_2$$

IVN beamforming

$$a(t) = a \times exp(j\omega_1 t)$$

$$TX_1$$

$$h_1$$

$$TX_2$$

$$h_2$$

Apply constant multiplier (phase shift)

$\begin{array}{c} \alpha \\ h_1 \\ TX_1 \\ \end{array}$ $\begin{array}{c} h_2 \\ TX_2 \\ \end{array}$ β

$$y = \alpha h_1 + \beta h_2$$

IVN beamforming

Apply constant multiplier (phase shift)

$\begin{array}{c} \alpha \\ h_1 \\ TX_1 \end{array}$ $\begin{array}{c} h_2 \\ h_2 \end{array}$

$$y = \alpha h_1 + \beta h_2$$

IVN beamforming

$$a(t) = a \times \exp(j\omega_1 t)$$

$$TX_1$$

$$h_1$$

$$TX_2$$

$$h_2$$

$$\beta(t) = \beta \times \exp(j\omega_2 t)$$

Apply constant multiplier (phase shift)

$\begin{array}{c} \alpha \\ \hline TX_1 \\ \hline TX_2 \\ \beta \end{array}$

$$y = \alpha h_1 + \beta h_2$$

IVN beamforming

$$a(t) = a \times \exp(j\omega_1 t)$$

$$TX_1$$

$$h_1$$

$$TX_2$$

$$h_2$$

$$\beta(t) = \beta \times \exp(j\omega_2 t)$$

$$y(t) = \alpha h_1 e^{j\omega_1 t} + \beta h_2 e^{j\omega_2 t}$$

Apply constant multiplier (phase shift)

IVN beamforming

Apply time-varying multiplier (frequency shift)

$$a(t) = a \times exp(j\omega_1 t)$$

$$TX_1$$

$$h_1$$

$$TX_2$$

$$h_2$$

$$S(t) = \beta \times exp(j\omega_2 t)$$

$$y = \alpha h_1 + \beta h_2$$

$$y(t) = \alpha h_1 e^{j\omega_1 t} + \beta h_2 e^{j\omega_2 t}$$

Mathematically, IVN introduces a time-varying channel

Apply constant multiplier (phase shift)

IVN beamforming

Apply time-varying multiplier (frequency shift)

$$a(t) = a$$

$$h_1 \times \exp(j\omega_1 t)$$

$$TX_1$$

$$h_2 \times \exp(j\omega_2 t)$$

$$TX_2$$

$$\beta(t) = \beta$$

$$y = \alpha h_1 + \beta h_2$$

$$y(t) = \alpha h_1 e^{j\omega_1 t} + \beta h_2 e^{j\omega_2 t}$$
$$= \alpha h_1(t) + \beta h_2(t)$$

Mathematically, IVN introduces a time-varying channel

IVN beamforming

Apply constant multiplier (phase shift)

Apply time-varying multiplier (frequency shift)

IVN's beamformer introduces frequency shifts to focus power under blind channel conditions

$$y = \alpha h_1 + \beta h_2$$

$$y(t) = \alpha h_1 e^{j\omega_1 t} + \beta h_2 e^{j\omega_2 t}$$

$$= \alpha h_1(t) + \beta h_2(t)$$

Mathematically, IVN introduces a time-varying channel

IVN's beamformer introduces frequency shifts to focus power under blind channel conditions

IVN's beamformer introduces frequency shifts to focus power under blind channel conditions

IVN's beamformer introduces frequency shifts to focus power under blind channel conditions

Deep-Tissue Communication

Deep-Tissue Communication

IVN leverages backscatter, the most energy-efficient communication technology

Deep-Tissue Communication

IVN leverages backscatter, the most energy-efficient communication technology

Correct Decoding requires $A_2 > 50\% A_1$

We formulate frequency selection as an optimization problem to maximize peak power with communication constraints

Extend IVN to enable two-way communication with multiple deep-tissue sensors

Implementation & Evaluation

Implementation

IVN's Multi-antenna beamformer

- USRP N210 software defined radios with SBX daughterboard
- 6-dBi patch antennas
- Transmit around 900MHz

Out-of-band reader

Deals with self-interference on uplink

Baseline: Multi-antenna transmitter (MIMO) using same setup

Standard sensor Avery Dennison AD-238u8 RFID

Miniature sensor Xerafy Dash-On XS

Evaluation

- In-Vitro: Out-of-body Liquids and Simulated Fluids
 - Water, gastric fluid, intestinal fluid
- <u>Ex-Vivo</u>: Various animal tissues (performed outside animals)
 - Pork meat, chicken breast, beef meat
- In-Vivo: Experiment inside living animal
 - Living yorkshire pig

Experiment: Test 10-antenna beamformer in different tissues

Measured as ratio of the peak power of the multi-antenna beamformer to that of a single-antenna transmitter

IVN can deliver MIMO gains under blind channel conditions to deep tissue battery-free sensors

Communication Depth inside Water (Standard Sensor)

Communication Depth inside Water (Standard Sensor)

Communication Depth inside Water (Standard Sensor)

subcutaneous (via than 3cm incision)

placement

Female Yorkshire pig weighing 85Kg

- Sedation was performed by intramuscular injection of Telazol, xylazine, and atrophine
- Sensors tested in two placements

- Antennas placed laterally between 30 to 80cm from the animal's left side
- Experiment carried at MIT's animal facility and approved by MIT's committee on animal care

Experiment: Send command to a deep-tissue sensor and measure its response to IVN

Experiment: Send command to a deep-tissue sensor and measure its response to IVN

Experiment: Send command to a deep-tissue sensor and measure its response to IVN

Standard sensor placed in stomach

Experiment: Send command to a deep-tissue sensor and measure its response to IVN

Standard sensor placed in stomach

Experiment: Send command to a deep-tissue sensor and measure its response to IVN

Standard sensor placed in stomach

Miniature sensor placed subcutaneously

Experiment: Send command to a deep-tissue sensor and measure its response to IVN

Standard sensor placed in stomach

Miniature sensor placed subcutaneously

Experiment: Send command to a deep-tissue sensor and measure its response to IVN

Standard sensor placed in stomach

Results demonstrate IVN ability to wirelessly power and communicate with battery-free sensors in deep tissues inside living animals

0 50 100 150 200 250 300 350

 IVN enables powering and communication with batteryfree deep-tissue implants

- IVN enables powering and communication with batteryfree deep-tissue implants
- New technology that enables beamforming to deeptissues under blind wireless channel

- IVN enables powering and communication with batteryfree deep-tissue implants
- New technology that enables beamforming to deeptissues under blind wireless channel
- IVN tested in tissues and in live animals

- IVN enables powering and communication with batteryfree deep-tissue implants
- New technology that enables beamforming to deeptissues under blind wireless channel
- IVN tested in tissues and in live animals
- Open up possibilities for wireless networking to help curing medical diseases like Parkinson's and Alzheimer's

