Control Plane Compression

Ryan Beckett

Aarti Gupta Ratul Mahajan David Walker

South Africa: FNB solves crippling connectivity issues

July 25, 2016 • Finance, Southern Africa, Top Stories

BGP errors are to blame for Monday's Twitter outage, not DDoS attacks

No, your toaster didn't kill Twitter, an engineer did

Microsoft: misconfigured network device led to Azure outage

30 July 2012 By Yevgeniy Sverdlik

Router Crashes Trigger Major Southwest IT System Failure

By: Chris Preimesberger | July 21, 2016

Unions want Southwest CEO removed after IT outage

BlackBerry outage could cost RIM \$100 million

Massive route leak causes Internet slowdown

Posted by Andree Toonk – June 12, 2015 – BGP instability – No Comments

Xbox Live outage caused by network configuration problem

BY TODD BISHOP on April 15, 2013 at 9:27 am

Good news! Some Solutions

Data Plane Verification

Anteater [Mai 2011]

HSA [Kazemian 2012]

Veriflow [Kurshid 2013]

NoD [Lopes 2015]

Symmetries [Plotkin 2016]

. . .

Good news! Some Solutions

Data Plane Verification

Anteater [Mai 2011]

HSA [Kazemian 2012]

Veriflow [Kurshid 2013]

NoD [Lopes 2015]

Symmetries [Plotkin 2016]

. . .

Control Plane Simulation

C-BGP [Quotin 2005]

Batfish [Fogel 2015]

. .

Control Plane Verification

Bagpipe [Weitz 2016]

ARC [Gember-Jacobsen 2016]

ERA [Fayaz 2017]

MineSweeper [Beckett 2017]

. . .

Properties

no transit

router or subnet equivalence

no loops

no black holes

A Problem of Scale

Other technologies, such as simulation, suffer similar, though less severe trends.

Our Contribution: Reduce the Scale

Empirical analysis: real networks reduced by 5-7x (# nodes); by 7-100x (# edges)

Theoretical analysis: we prove our algorithm generates behaviorally bisimilar networks

The Network Model

[Formal model builds on past work on stable paths [Griffin et al, 2002] or routing algebras [Sobrinho 2005] and work here at here at SIGCOMM 2018 by Daggitt *et al*.]

visual representation / flow of traffic:

Valid Abstractions

Goal: Compute a small network with a "similar" solution to the big one

Constraint: We can't actually compute the solutions and compare them! We need a quick test that suffices to guarantee similarity.

A pair of functions: (f, h)

abstracts route announcements

abstracts topology

A pair of functions: (f, h)

A pair of functions: (f, h)

(1) Forall-exists requirement

concrete nodes must have similar connections as their abstract representatives

eg: Because the abstract green node has an edge to the abstract red node, *all* concrete green nodes must have an edge to *some* concrete red node

(1) Forall-exists requirement All green nodes have an edge to some red node Wrong. b_2 to a red node so it can't be green

c₁ has no edge

Theorem: If an abstraction satisfies the forall-exists requirement and the transfer equivalence requirement then it will compute similar global solutions as its related concrete network.

Corollary

Valid abstractions preserve:

- (1) Reachability
- (2) Routing Loops
- (3) Hop Count
- (4) Multipath Consistency
- (5) Waypointing

The algorithm: How to find a valid abstraction

Checking for Transfer Equivalence

Binary Decision Diagrams (BDDs)

- Represents route-maps and ACLs
- Once BDDs have been built, we can test for transfer equivalence in constant time.

Greedy Abstraction Refinement Algorithm

- Start with 2 abstract nodes
- Repeatedly split until a valid abstraction is found.

Greedy Abstraction Refinement Algorithm

- Start with 2 abstract nodes
- Repeatedly split until a valid abstraction is found.

topological forall-exists condition is violated: b₁ has an edge to orange node, but a₁ does not.

Greedy Abstraction Refinement Algorithm

- Start with 2 abstract nodes
- Repeatedly split until a valid abstraction is found.

topological forall-exists condition is violated: b₁ has an edge to a blue node, but c₁ does not

Greedy Abstraction Refinement Algorithm

- Start with 2 abstract nodes
- Repeatedly split until a valid abstraction is found.

An Aside: BGP Behaving Badly

- You might think that if 2 BGP nodes have syntactically identical configurations then they process all routes the same way (ie, transfer equivalence holds)
- Spoiler: They might not! BGP loop detection discards routes differently.
- Omment: If transfer equivalence doesn't hold, the algorithm fails to compress
- Fun fact: We prove a node can have up to k+1 different behaviors, where k is the # of different local preferences used.
- See the paper (and Ryan's thesis) for proofs and a revised algorithm for BGP.

Evaluation

Synthetic Benchmarks

[MineSweeper verifying all-pairs reachability with shortest paths policy]

Synthetic Benchmarks

[MineSweeper verifying all-pairs reachability with shortest paths policy]

Case Studies

Datacenter

- Roughly 600,000 lines of configuration for 197 devices
- Only 26 unique "roles"
- Compression takes ~15.5 seconds per destination class (DC) for 1269 DCs
- Number of nodes compressed on average by 6.6x and edges by 112x

WAN

- Roughly 600,000 lines of configuration for 1086 devices
- Only 137 unique "roles"
- Compression takes ~1.8 seconds per DC for 845 DCs
- Number of nodes compressed by 5.2x and edges by 7.2x
- Note: MineSweeper still doesn't scale due to the protocols used; Batfish does

Bonsai Limitations

- Not guaranteed to find the optimal abstraction (though often good)
- Properties can not depend on the number of edges/neighbors/paths
 - Fault tolerance properties are not preserved
- Whether or not Bonsai preserves divergence is an open question

Summary: Control Plane Compression

- The Bonsai algorithm finds compresses real networks by a factor of 5-7 in the number of nodes and 5-100 in the number of edges.
- It preserves many path properties, such as reachability, but not fault tolerance.
- We have proven it correct with respect to a generic routing protocol.