
1

Ryan Becke*

Aar- Gupta Ratul Mahajan David Walker

Control Plane Compression

3

5Good news! Some Solu/ons

Data Plane Verification

Veriflow [Kurshid 2013]

HSA [Kazemian 2012]

NoD [Lopes 2015]

…

Anteater [Mai 2011]

Symmetries [Plotkin 2016]

6Good news! Some Solutions

Control Plane Simulation

Control Plane Verification

[Gember-Jacobsen 2016]

[Beckett 2017]MineSweeper

ARC

Batfish [Fogel 2015]

C-BGP [Quotin 2005]

Bagpipe [Weitz 2016]

…

[Fayaz 2017]ERA

…

Data Plane Verification

Veriflow [Kurshid 2013]

HSA [Kazemian 2012]

NoD [Lopes 2015]

Anteater [Mai 2011]

…

Symmetries [Plotkin 2016]

reachability

no black holes

=

router or subnet equivalence no loops

no transit

Proper&es

A Problem of Scale

1000 5000

Other technologies, such as simulation, suffer similar, though less severe trends.

industrial data centers# of devices

MineSweeper
Verification

Time

500

10Our Contribution:
Reduce the Scale

Bonsai
Batfish

<your tool here>

MineSweeper

big network small network

Empirical analysis: real networks reduced by 5-7x (# nodes); by 7-100x (# edges)

Theoretical analysis: we prove our algorithm generates behaviorally bisimilar networks

The Network Model

!

A Generic Routing Protocol
destination

[Formal model builds on past work on stable paths [Griffin et al, 2002] or routing algebras [Sobrinho 2005]
and work here at here at SIGCOMM 2018 by Daggitt et al.]

!

A Generic Routing Protocol

route announcements

!

A Generic Rou,ng Protocol

chosen route

!

A Generic Rou,ng Protocol

a solution
(L – a labelling of nodes)

!

A Generic Routing Protocol

visual representation /
flow of traffic:

Valid Abstrac-ons

27Network Abstractions

! !

Goal: Compute a small network with a “similar” solution to the big one
Constraint: We can’t actually compute the solutions and compare them!
We need a quick test that suffices to guarantee similarity.

28

! !

" "

#$ #% #

A pair of functions: (f, h)
abstracts
topology

abstracts route
announcements

Network Abstractions

29

! !

" "

#$ #% #&

A pair of functions: (f, h)

Network Abstractions

30

! !

" "

#$ #% #

ℎ
a, b%, d a, b, d

A pair of functions: (f, h)

Network Abstractions

31Abstrac*on Requirements

!" !#

$

%" %#

$

!

%

(1) Forall-exists requirement

eg: Because the abstract green
node has an edge to the abstract
red node, all concrete green nodes
must have an edge to some concrete
red node

concrete nodes must
have similar connections
as their abstract representatives

32Abstraction Requirements

!" !#

$" $#

%

!

$

%

&"
Wrong.
c1 has no edge
to a red node
so it can’t be
green

(1) Forall-exists requirement
All green nodes have an edge
to some red node

33Abstrac)on Requirements

!" !#

$" $#

!

$

Each green node has an edge
to “some” red node

(1) Forall-exists requirement

%

&"

%

&

34Abstraction Requirements

!" !#

$

%" %#

$

!

%

(2) Transfer-equivalence requirement

&1
h

h
&2

!1

!2

“concrete announcements are processed
the same way as abstract announcements
(modulo the abstraction function h)”

35
Theorem: If an abstraction satisfies the forall-exists
requirement and the transfer equivalence requirement
then it will compute similar global solutions as its
related concrete network.

!" !#

$

%" %#

$

!

%

similar (modulo h) best routes

36

!" !#

$

%" %#

$

!

%

(1) Reachability
(2) Routing Loops
(3) Hop Count
(4) Multipath Consistency
(5) Waypointing

Valid abstractions preserve:

Corollary

The algorithm:
How to find a valid abstraction

38Checking for Transfer Equivalence

!" !#

$

%" %#
1 0

Binary Decision Diagrams (BDDs)

Represents route-maps and ACLs

Once BDDs have been built,
we can test for transfer equivalence
in constant time.

39

Greedy Abstraction Refinement Algorithm

Start with 2 abstract nodes

Repeatedly split until a valid abstraction
is found.

Finding an Abstraction: The Algorithm

40

Greedy Abstraction Refinement Algorithm

Start with 2 abstract nodes

Repeatedly split until a valid abstraction
is found.

!"

#"$%

!%

#%

&

Finding an Abstraction: The Algorithm

topological forall-exists condition is violated:
b1 has an edge to orange node, but a1 does not.

41

!"

#"$%

!%

#%

&

Finding an Abstraction: The Algorithm

Greedy Abstraction Refinement Algorithm

Start with 2 abstract nodes

Repeatedly split until a valid abstraction
is found.

topological forall-exists condition is violated:
b1 has an edge to a blue node, but c1 does not

42

!"

#"$%

!%

#%

&

Finding an Abstraction: The Algorithm

Greedy Abstraction Refinement Algorithm

Start with 2 abstract nodes

Repeatedly split until a valid abstraction
is found.

43

!

Finding an Abstraction: The Algorithm

"#

$#%&

"&

$&

!

$%

"

44An Aside: BGP Behaving Badly
You might think that if 2 BGP nodes have syntactically identical configurations
then they process all routes the same way (ie, transfer equivalence holds)

Fun fact: We prove a node can have up to k+1 different behaviors,
where k is the # of different local preferences used.

Spoiler: They might not! BGP loop detection discards routes differently.

See the paper (and Ryan’s thesis) for proofs and a revised algorithm for BGP.

Comment: If transfer equivalence doesn’t hold, the algorithm fails to compress

Evaluation

46Synthetic Benchmarks
[MineSweeper verifying all-pairs reachability with shortest paths policy]

Fattree

47Synthetic Benchmarks
[MineSweeper verifying all-pairs reachability with shortest paths policy]

Fattree Ring

48Case Studies

Roughly 600,000 lines of configuration for 197 devices
Datacenter

Only 26 unique “roles”
Compression takes ~15.5 seconds per destination class (DC) for 1269 DCs
Number of nodes compressed on average by 6.6x and edges by 112x

Roughly 600,000 lines of configuration for 1086 devices
WAN

Only 137 unique “roles”
Compression takes ~1.8 seconds per DC for 845 DCs
Number of nodes compressed by 5.2x and edges by 7.2x
Note: MineSweeper still doesn’t scale due to the protocols used; Batfish does

49Bonsai Limitations

Not guaranteed to find the optimal abstraction (though often good)

Whether or not Bonsai preserves divergence is an open question

Properties can not depend on the number of edges/neighbors/paths

• Fault tolerance properties are not preserved

52Summary: Control Plane Compression

The Bonsai algorithm finds compresses real networks by a factor of 5-7 in
the number of nodes and 5-100 in the number of edges.

It preserves many path properties, such as reachability, but not fault tolerance.

Bonsai

We have proven it correct with respect to a generic routing protocol.

