
Repeatable research, measurement,
and cybersecurity

– opportunity and necessity –

Andrew W. Moore
Computer Laboratory

Dept of Computer Science and Technology

1http://www.cl.cam.ac.uk/~awm22/slides/2018-sigcomm-wtmc-moore.pdf
ACM SIGCOMM 2018 Workshop on Traffic Measurements for Cybersecurity (WTMC 2018)

Reproducibility in Science

• Validate Correct Results
supporting the conclusions

and
compare with new ideas

• Invalidate Incorrect results
refuting the conclusions

and
improve and refine

3

Reproducibility as validation

4

Reproducibility as invalidation

5

Reproducibility as invalidation

6

Researchers: Novel &
Disruptive ideas

7

Flexibility: the network architect
(& operator) dilemma…

network infrastructure
and services

minimizing
purchase costs
and operation

costs.

Researchers: Novel &
Disruptive ideas

8

Flexibility: the network architect
(& operator) dilemma…

network infrastructure
and services

minimizing
purchase costs
and operation

costs.

Researchers: Novel &
Disruptive ideas

If we want the best new ideas;

we need to evaluate them

9

What do Linux apache MySQL Firefox BSD BIND and Bro

have in common with the resurgence in
Software Defined Networking (SDN)?

10

What do Linux apache MySQL Firefox BSD BIND and Bro

have in common with the resurgence in SDN?

Openly available source and open standards

11

An approach
(perhaps not the solution)

• SDN, not a new idea but one that has definitely had rockets in recent
years.

12

An approach
(perhaps not the solution)

• SDN, not a new idea but one that has definitely had rockets in recent
years.

13

And not just an implementation…

• OFLOPS – the OpenFlow performance tester
• OFtest – OpenFlow compliance tester

• OvS – software only implementation

• Numerous OpenFlow controllers:
From Ryu to OpenDaylight

14

Each a stabile platform
• enabling extension, and
• a process for adopting contributions and improvements

15

Because network research, and education
needs a good platform

www.netfpga.org

16

So what is NetFPGA?
NetFPGA = Networked FPGA

A line-rate, flexible, open networking
platform for teaching and research

64bit MIPS-like (CHERI & BERI), RISC-V, Blueswitch, EMU, P4 FPGA…
17

Some thoughts on Application
Identification and Classification

Some thoughts on Application
Identification and Classification

Ten-year old

"Those who cannot remember the
past are condemned to repeat it."

But this time with different buzzwords?

Why Characterize?

• Identify: “Hmmm, So this is what an attack looks like”

• Understanding: “So what is my network doing anyway?”

• Accountability: “What has caused this enormous bill?”

• Application Enabler: Dynamic (application-specific) handling (e.g. routing) by end systems

• Performance Tracking: “What is causing my application to go so very slow?”

• Application identification: “…telling helpdesk what the users won’t or can’t find out”

• Better Models: Leading to better/more-realistic test traffic

Understanding
traffic for a large university - not Cambridge

Traffic Distribution of the network of the University of Wisconsin for the week 7-13 Sept. 2003. Courtesy of wwstats.net.wisc.edu

THIS IS THE PROBLEM – NO IDEA WHAT IT IS

Another port example
For a large ISPs router - in London - July 2006Port numbers seem

helpful,
this is web

But these top 5 are
either:

keyboard loggers
or viruses

or legitimate

And these three are
peer-2-peer and perhaps

another virus

and this is FTP

In this top-ten over half the traffic is not on the
official port list

So we end up guessing what it is

That was about 2 terabytes a day for this router
alone – in 2006!

Why is this a problem?
For one particular traffic sample...

•Using a port-based method we could not identify 30% of the traffic at all

Why? Many ports are not “designated”, have unofficial uses or an ambiguous
designation

32343: Err no-idea

4662: that would be eMule, but it isn’t in any “official” list

•Of the 70% we could identify with port-based schemes a further 29% was
incorrectly identified

Why? Official port lists don’t tell the whole tale
“If I wrap my new application up to look like HTTP it will get
through the firewall”

80: HTTP is that a server or a proxy or a VPN or a ...?

Ports as poor practice

• Ports are still used as some sort of definitive classifier
• Commonly by studies examining the effectiveness of new

methods
(using traffic without “ground-truth”)

• BUT
ground-truth error >> evaluation accuracy

What is an application anyway?

• port 80?
• http on port 80?
• html on http on port 80?
• web page on html on http on port 80?
• So what about gmail?

• email or web (browser) traffic?
• What about when my MUA gets the email via the webmail interface?

Email

• MTA vs MUA

• Spam vs Ham

• Commercial vs Domestic

• Decent vs Wicked

A modern equivalent…

Bad guys or bad content is coming from some IP addresses

Lets block them!

But those are the IP addresses of
• Amazon AWS
• Akamai CDN
• …

Domain Knowledge

• Each of the motivations for “Why?” is a different domain of
knowledge:
• Hard to compare methods applied to different domains
(Helping helpdesk may require significant site knowledge & historical

knowledge)
• Hard to compare data used in/by/for different methods

• ML “headline”: These approaches encode domain knowledge

Anyone remember expert-systems?

Elephants in the
Hallway/Driveway/Kitchen/Lounge(room)/Bathroom/Bedroom

• Limited engagement of/with the M-L community
• Mea Cupla - I don’t read KDD output either

(in fact SIGKDD is happening right now – in London)

• Difficult-to-compare methodologies

• Difficult-to-compare datasets

• Lack of (annotated) Data
• We don’t/can’t play nicely together
• Privacy/Law

Classes as confusion
Network traffic

Paper 1
Network traffic

Paper 2
Network traffic

Paper 3
Typical IDS paper

7 meta-classes
(? classes)

11 meta-classes
(40-50 classes)

11 meta-classes
(40-50 classes)

2/3 meta-classes

domain, ftp-data,
https, kazaa,
realmedia, telnet,
www

bulk(ftp), database,
interactive, mail,
services, www, p2p,
attack, games,
multimedia,
unknown

web, p2p, data(ftp),
network
management, mail,
news, chat/irc,
streaming, gaming,
nonpayload,
unknown

Good, Bad, Ugly

How can I compare these methods?
I certainly can’t compare the output

Upshot - one persons great performance
is another persons rubbish performance

What can we do?

• Raise the bar on acceptable research
• Insist on the artefacts being published
• Insist on the results being available
• Insist on the experiments being repeatable
• Accept reproduction studies (well done CCR!)

• Enable Research Repeatability

32

Lead by example

33

Lead by example

Moore & Zuev 2005, we published the dataset and code to create this dataset

https://www.cl.cam.ac.uk/research/srg/netos/projects/
archive/nprobe/data/papers/sigmetrics/index.html

In a form that was preserved anonymity and
1. Enabled reproducibility,
2. Enabled comparison against new algorithms, and
3. Actively encouraged others to create their own datasets

34

Lead by exampleDraft of 01/10/2014, 17:49 – please do not distribute.

Queues don’t matter when you can JUMP them!

Matthew P. Grosvenor Malte Schwarzkopf Ionel Gog Robert N. M. Watson
Andrew W. Moore Steven Hand Jon Crowcroft

University of Cambridge Computer Laboratory

Simplicity is the shortest path to a solution.
– Ward Cunningham

Abstract
QJUMP is a simple and immediately deployable ap-

proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications. To
mitigate network interference, QJUMP applies Internet
QoS-inspired techniques to datacenter applications. We
assign each application to a latency sensitivity level (or
class)—packets from higher levels are rate-limited in the
end host, but once allowed into the network can “jump-
the-queue” over packets from lower levels. In settings
with known node counts and link speeds, QJUMP can
support service levels ranging from strictly bounded la-
tency (but with low rate) through to line-rate throughput
(but without any latency guarantees).

We have implemented QJUMP as a Linux Traffic Con-
trol module. We show that QJUMP achieves bounded
latency and reduces in-network interference by up to
300⇥, outperforming Ethernet Flow Control (802.3x),
ECN (WRED) and DCTCP. We also show that QJUMP
improves average flow completion times, performing
close to or better than DCTCP and pFabric.

1 Introduction
Many datacenter applications are sensitive to tail laten-
cies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]. This has a tangible impact on user engage-
ment and thus potential revenue [8, 9].

One source of latency tails is network interfer-
ence: congestion from throughput-intensive applications
causes queueing that delays traffic from latency-sensitive
applications. For example, Hadoop MapReduce can
cause queueing that extends memcached request latency
tails by 85⇥ the interference-free maximum (§2).

If memcached packets can somehow be prioritized to
“jump-the-queue” over Hadoop’s packets, memcached
will no longer experience latency tails due to Hadoop.
Of course, multiple instances of memcached may still
interfere with each other, causing long queues or incast
collapse [10]. However, if each memcached instance can
be appropriately rate-limited at the origin, this too can be
mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Internet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single
authority (at least up to the hypervisor or OS). In this
new environment, we can enforce a system-wide policy,
and calculate specific rate-limits which take into account
worst-case behavior, ultimately allowing us to provide a
guaranteed bound on network latency [27, 28].

QJUMP implements these concepts in a minimal rate-
limiting Linux kernel module and application utility.
QJUMP has four key features. It:

1. resolves network interference for latency-sensitive
applications without sacrificing utilization for
throughput-intensive applications;

2. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring
no changes to hardware or application code; and

4. performs close to or better than competing sys-
tems, including ECN, 802.3x, DCTCP and pFabric,
but is considerably less complex to understand, de-
velop and deploy.

In this work, we consider only latency tails that result
from in-network interference. Other work mitigates host-
based sources of latency tails [14, 23, 30, 32, 36].

1

35

Lead by exampleDraft of 01/10/2014, 17:49 – please do not distribute.

Queues don’t matter when you can JUMP them!

Matthew P. Grosvenor Malte Schwarzkopf Ionel Gog Robert N. M. Watson
Andrew W. Moore Steven Hand Jon Crowcroft

University of Cambridge Computer Laboratory

Simplicity is the shortest path to a solution.
– Ward Cunningham

Abstract
QJUMP is a simple and immediately deployable ap-

proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications. To
mitigate network interference, QJUMP applies Internet
QoS-inspired techniques to datacenter applications. We
assign each application to a latency sensitivity level (or
class)—packets from higher levels are rate-limited in the
end host, but once allowed into the network can “jump-
the-queue” over packets from lower levels. In settings
with known node counts and link speeds, QJUMP can
support service levels ranging from strictly bounded la-
tency (but with low rate) through to line-rate throughput
(but without any latency guarantees).

We have implemented QJUMP as a Linux Traffic Con-
trol module. We show that QJUMP achieves bounded
latency and reduces in-network interference by up to
300⇥, outperforming Ethernet Flow Control (802.3x),
ECN (WRED) and DCTCP. We also show that QJUMP
improves average flow completion times, performing
close to or better than DCTCP and pFabric.

1 Introduction
Many datacenter applications are sensitive to tail laten-
cies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]. This has a tangible impact on user engage-
ment and thus potential revenue [8, 9].

One source of latency tails is network interfer-
ence: congestion from throughput-intensive applications
causes queueing that delays traffic from latency-sensitive
applications. For example, Hadoop MapReduce can
cause queueing that extends memcached request latency
tails by 85⇥ the interference-free maximum (§2).

If memcached packets can somehow be prioritized to
“jump-the-queue” over Hadoop’s packets, memcached
will no longer experience latency tails due to Hadoop.
Of course, multiple instances of memcached may still
interfere with each other, causing long queues or incast
collapse [10]. However, if each memcached instance can
be appropriately rate-limited at the origin, this too can be
mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Internet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single
authority (at least up to the hypervisor or OS). In this
new environment, we can enforce a system-wide policy,
and calculate specific rate-limits which take into account
worst-case behavior, ultimately allowing us to provide a
guaranteed bound on network latency [27, 28].

QJUMP implements these concepts in a minimal rate-
limiting Linux kernel module and application utility.
QJUMP has four key features. It:

1. resolves network interference for latency-sensitive
applications without sacrificing utilization for
throughput-intensive applications;

2. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring
no changes to hardware or application code; and

4. performs close to or better than competing sys-
tems, including ECN, 802.3x, DCTCP and pFabric,
but is considerably less complex to understand, de-
velop and deploy.

In this work, we consider only latency tails that result
from in-network interference. Other work mitigates host-
based sources of latency tails [14, 23, 30, 32, 36].

1

http://www.camsas.org/qjump

36

Lead by exampleDraft of 01/10/2014, 17:49 – please do not distribute.

Queues don’t matter when you can JUMP them!

Matthew P. Grosvenor Malte Schwarzkopf Ionel Gog Robert N. M. Watson
Andrew W. Moore Steven Hand Jon Crowcroft

University of Cambridge Computer Laboratory

Simplicity is the shortest path to a solution.
– Ward Cunningham

Abstract
QJUMP is a simple and immediately deployable ap-

proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications. To
mitigate network interference, QJUMP applies Internet
QoS-inspired techniques to datacenter applications. We
assign each application to a latency sensitivity level (or
class)—packets from higher levels are rate-limited in the
end host, but once allowed into the network can “jump-
the-queue” over packets from lower levels. In settings
with known node counts and link speeds, QJUMP can
support service levels ranging from strictly bounded la-
tency (but with low rate) through to line-rate throughput
(but without any latency guarantees).

We have implemented QJUMP as a Linux Traffic Con-
trol module. We show that QJUMP achieves bounded
latency and reduces in-network interference by up to
300⇥, outperforming Ethernet Flow Control (802.3x),
ECN (WRED) and DCTCP. We also show that QJUMP
improves average flow completion times, performing
close to or better than DCTCP and pFabric.

1 Introduction
Many datacenter applications are sensitive to tail laten-
cies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]. This has a tangible impact on user engage-
ment and thus potential revenue [8, 9].

One source of latency tails is network interfer-
ence: congestion from throughput-intensive applications
causes queueing that delays traffic from latency-sensitive
applications. For example, Hadoop MapReduce can
cause queueing that extends memcached request latency
tails by 85⇥ the interference-free maximum (§2).

If memcached packets can somehow be prioritized to
“jump-the-queue” over Hadoop’s packets, memcached
will no longer experience latency tails due to Hadoop.
Of course, multiple instances of memcached may still
interfere with each other, causing long queues or incast
collapse [10]. However, if each memcached instance can
be appropriately rate-limited at the origin, this too can be
mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Internet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single
authority (at least up to the hypervisor or OS). In this
new environment, we can enforce a system-wide policy,
and calculate specific rate-limits which take into account
worst-case behavior, ultimately allowing us to provide a
guaranteed bound on network latency [27, 28].

QJUMP implements these concepts in a minimal rate-
limiting Linux kernel module and application utility.
QJUMP has four key features. It:

1. resolves network interference for latency-sensitive
applications without sacrificing utilization for
throughput-intensive applications;

2. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring
no changes to hardware or application code; and

4. performs close to or better than competing sys-
tems, including ECN, 802.3x, DCTCP and pFabric,
but is considerably less complex to understand, de-
velop and deploy.

In this work, we consider only latency tails that result
from in-network interference. Other work mitigates host-
based sources of latency tails [14, 23, 30, 32, 36].

1

http://www.camsas.org/qjump

37

38

Enable others

Cost Flexibility Resolution Line Rate

DPDK,
SW tools () ()

()

Reproducible research needs,
widely available test-equipment

Enable others

Cost Flexibility Resolution Line Rate

DPDK,
SW tools () ()

()

Reproducible research needs,
widely available test-equipment

39

Open-Source Network Tester

§ Open source hardware and software platform for network
test, publicly available

https://osnt.org/
https://github.com/NetFPGA/OSNT-Public/wiki

§ Low cost, low jitter, flexible to update, scale-out,
no CPU usage, nano-second resolution measurement

A platform for testing powered by

40

https://osnt.org/
https://github.com/NetFPGA/OSNT-Public/wiki

What can we do?

• Raise the bar on acceptable research
• Insist on the artefacts being published
• Insist on the results being available
• Insist on the experiments being repeatable
• Accept reproduction studies (well done CCR!)

• Enable Research Repeatability
and then Just Do It! Every time

• Open-source (research) platforms work!
Build on platforms, and support platforms

41

What can we do?

“Ok, that’s nice… still waiting for the cybersecurity connection?”

42

Jair Santanna
jairsantanna.com
j.j.santanna@utwente.nl

http://jairsantanna.com
mailto:j.j.santanna@utwente.nl

Jair Santanna
jairsantanna.com
j.j.santanna@utwente.nl

http://jairsantanna.com
mailto:j.j.santanna@utwente.nl

1. Collect

2. Transform

3. Apply

4. Disseminate

Cambridge Cybercrime Centre
(another unpaid advertisement)

• Rich expertise: University of Cambridge's Department of Computer
Science and Technology, Institute of Criminology and Faculty of Law.

• Data-driven approach: the need for real-data hampers everyone,
so….. Others can use our data too

• Importantly: This is not a competition –
“… I want to be judged not on how many papers we wrote in
Cambridge, but …(the work we enabled)… new ways to prevent crime,
to detect and deter criminals … that’s why society funds our work…”

Richard Clayton (Director)

https://www.cl.cam.ac.uk/
http://www.crim.cam.ac.uk/
https://www.law.cam.ac.uk/

Datasets at Cambridge Cybercrime Centre
• Underground Forums (>> 40m posts)
• Blog spam (>300K posts)
• Reflected DDoS victims (4+ years data)
• Mirai scanning data (of Cambridge and elsewhere)
• Mirai (etc) malware (since Dec 2016, 20K samples!)
• SSH honeypot datasets (> 2 years)
• Email spam (back to 2004, and some from the 1990s!)
• 419 scam emails (> 60K, dating back to 2006)
• Phishing emails (50K plus, over 10 years)
• Phishing URLs and pages

New field – new methods, new research, new science…..

What can we do?

• Raise the bar on acceptable research

• Enable Research Repeatability

• Open-source (research) platforms

• Share our research, our tools, our interpretation, our insights

51

Good data outlives bad theory…..

Good data outlives bad theory…..

Before global warming there was ozone depletion

What can we do?

• Raise the bar on acceptable research

• Enable Research Repeatability

• Open-source (research) platforms

• Share our research, our tools, our interpretation, our insights

Sharing is hard (ask any 5 year old)
but still worth doing!

54

Acknowledgements

55
http://www.cl.cam.ac.uk/~awm22/slides/2018-sigcomm-wtmc-moore.pdf

