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Routing: selecting paths for network traffic

how do we compute these paths?

destination 2



Inter-domain routing:
selecting paths across independent domains
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Intra-domain routing:
selecting paths within a single domain



Routing: selecting paths for network traffic

2:10 pm - 3:50 pm Main-Conference Session 2: Routing

Session Chair: Nate Foster (Cornell, USA)

Location: Vigado, 2nd-Floor Ceremonial Hall

210 pm - 2:35 pm

Internet Anycast: Performance, Problems and Potential B
Zhihao Li, Dave Levin, Neil Spring, Bobby Bhattacharjee (UMD, USA)

2:35 pm - 3:00 pm

3:.00 pm - 3:25 pm

B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in
Google's Software-Defined WAN

Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi, Kondapa Naidu B., Ei
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev, Steve Padgett, Faro Rabe,
Saikat Ray, Malveeka Tewari, Matt Tierney, Monika Zahn, Jonathan Zolla, Joon Ong, Amin Vahdat
(Google, USA)

On Low-Latency-Capable Topologies, and Their Impact on the Design of Intra-Domain Routing B
Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, Mark Handley (UCL, UK)

3225 pm - 350 pm

Asynchronous Convergence of Policy-Rich Distributed Bellman-Ford Routing Protocols
Matthew L. Daggitt (Cambridge, UK), Alexander J. T. Gurney (Comcast, USA), Timothy Griffin (Cambridge, B
UK)

Two papers on inter-domain routing
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2:10 pm - 3:50 pm Main-Conference Session 2: Routing

Session Chair: Nate Foster (Cornell, USA)
Location: Vigado, 2nd-Floor Ceremonial Hall
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Internet Anycast: Performance, Problems and Potential B
Zhihao Li, Dave Levin, Neil Spring, Bobby Bhattacharjee (UMD, USA)
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2:35 pm - 3:00 pm

k3:oo pm - 3:25 pm

B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in \
Google's Software-Defined WAN

Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi, Kondapa Naidu B, Ei
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev, Steve Padgett, Faro Rabe,
Saikat Ray, Malveeka Tewari, Matt Tierney, Monika Zahn, Jonathan Zolla, Joon Ong, Amin Vahdat
(Google, USA)

On Low-Latency-Capable Topologies, and Their Impact on the Design of Intra-Domain Routing B
Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, Mark Handley (UCL, UK) /

325 pm - 350 pm

Asynchronous Convergence of Policy-Rich Distributed Bellman-Ford Routing Protocols
Matthew L. Daggitt (Cambridge, UK), Alexander J. T. Gurney (Comcast, USA), Timothy Griffin (Cambridge, B
UK)

Two papers on intra-domain routing
specifically, routing in Wide Area Networks (WANsSs)
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selecting paths across independent domains
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Inter-domain routing:
selecting paths across independent domains
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The Border Gateway Protocol (BGP):

a policy-based path-vector protocol
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Path-vector, distance-vector:
the Distributed Bellman-Ford routing family

Each node performs the following operations:
e import: learn routes from neighbors
* ranking: select a best route

e export: announce the best route to neighbors



Distributed Bellman-Ford:
shortest-path -vector protocol

Each node performs the following operations:
e import: learn routes from neighbors
* ranking: select a best route

e export: export the best route



Distributed Bellman-Ford: an example of
shortest-path path-vector protocol
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Distributed Bellman-Ford: an example of
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Distributed Bellman-Ford: an example of
shortest-path path-vector protocol
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Distributed Bellman-Ford: an example of
shortest-path path-vector protocol

our desired path is
not a shortest-path! &
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The Border Gateway Protocol:

a policy-based path-vector protocol

our desired path is
not a shortest-path!  [5
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BGP policy-based path-vector

Each node performs the following operations:

e import: learn routes from neighbors
e filter routes based on regular expressions (e.g. filter routes through network X)
e filter routing loops!

* ranking: select a best route
* rank routes based on BGP metrics (e.g., prefer routes through X)
* break ties based on number of traversed domains

e export: export the best route
e announce routes based on regular expressions (e.g., do not announce a route to X)
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The Border Gateway Protocol:

a policy-based distance-vector protocol

BGP ranking policy: A
_ 2 | prefer to route to South
.\\ America regardless of
path length )
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The Border Gateway Protocol:
routing inconsistencies
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Paper #4:
Asynchronous Convergence of Policy-Rich
Distributed Bellman-Ford Routing Protocols



Paper #4:
Asynchronous Convergence of Policy-Rich
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Tradeoff between routing expressiveness and convergence:

* shortest-path is not expressive for implementing economic goals...

* ... but conflicting BGP policies may lead to routing instabilities



Paper #4:
Asynchronous Convergence of Policy-Rich
Distributed Bellman-Ford Routing Protocols

Tradeoff between routing expressiveness and convergence:

* shortest-path is not expressive for implementing economic goals...

* ... but conflicting BGP policies may lead to routing instabilities

In this paper:

"What classes of routing policies (i.e., import, ranking, and export policies) are
guaranteed to converge to a stable state when messages can be lost,
reordered, and indefinitely delayed?”

 Studies both distance-vector (RIP-like) and path-vector (BGP-like) routing



Recommended readings for paper #4

* L. Gao and J. Rexford. "Stable internet routing without global coordination". In
Transactions on Networking 2001

* T. Griffin et al. "The stable paths problem and interdomain routing". In
Transactions on Networking 2002

* T. Griffin and J. L. Sobrinho. "Metarouting". In SIGCOMM 2005
e R.Sami et al, "Searching for Stability in Interdomain Routing". In INFOCOM 2009

M. Chiesa et al, "Using routers to build logic circuits: How powerful is BGP?". In
ICNP 2013



Internet Load-balancing

IP =140.0.0.1
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Internet Load-balancing:
BGP determines Internet routing paths
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Internet Load-balancing:
BGP determines Internet routing paths
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Reducing user latency:
Add service replicas closer to the users
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Reducing user latency:
How to reach the "“closest” replica?
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One approach is anycast routing:
Announce the same IP prefix from different locations
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One approach is anycast routing:
BGP determines the closest replical
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Notorious problems with BGP

BGP selects the best route based on:

* explicit routing policies (e.g., prefers routes through X overY)

* number of traversed domains

BGP does not care about:

» physical properties of the route (e.g., geographical distance -> latency)

BGP latency-oblivious routing affects anycast effectiveness!

[1] Internet Anycast: Performance, Problems, & Potential. In SIGCOMM 2018



Paper #1.:
Internet Anycast: Performance, Problems, & Potential

Prior studies:

”[In anycast routing,] clients are often routed to replicas that are hundreds of
kilometers away from their closest replicas”



Paper #1.:
Internet Anycast: Performance, Problems, & Potential

Prior studies:

”[In anycast routing,] clients are often routed to replicas that are hundreds of
kilometers away from their closest replicas”

In this paper:
1. A deep investigation of why anycast fails

2. Atechnique to fix anycast (spoiler: include geographical hints in BGP)



Recommended readings for paper #4

Anycast routing:

* H. Ballani and P. Francis. "Towards a global IP anycast service”. In ACM
SIGCOMM, 2005.

Demand-aware BGP improvements:

* K. Yap et al. "Taking the Edge off with Espresso: Scale, Reliability and
Programmability for Global Internet Peering". In SIGCOMM 2017

* B. Schlinker et al. "Engineering Egress with Edge Fabric". In SSIGCOMM 2017
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Intra-domain routing:
selecting paths within a single domain

what are the best paths?
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Objectives, e.g.,:
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- min latency \ /‘
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Goal: understanding the interplay between network topology and latency
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impact on the design of intra-domain routing

Goal: understanding the interplay between network topology and latency

Fundamental questions investigated in this paper:

1) "Are there topologies that are more suitable to accomodate latency-sensitive,
dynamic traffic demands?”’

2) “What type of routing schemes perform well on such topologies?”



Paper #3:
On low-latency-capable topologies, and their
impact on the design of intra-domain routing

Goal: understanding the interplay between network topology and latency

Fundamental questions investigated in this paper:

1) "Are there topologies that are more suitable to accomodate latency-sensitive,
dynamic traffic demands?”’

2) “What type of routing schemes perform well on such topologies?”

State of the art improvements:

e outperforms existing routing schemes on achieving low latency traffic delivery



Paper #2:
B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for
Availability and Scale in Google’s Software-Defined WAN

A unique look into Google’s SDN Wide Area Network Routing

Main routing challenges:
* performance
* scalability

* availability



Recommended readings for paper #2 and #3

* Wide Area Network Traffic-Engineering:
* C.Hong et al. "Achieving high utilization with software-driven WAN”. In SIGCOMM 2013
* S.Jain et al. "B4: experience with a globally-deployed software defined wan". In SIGCOMM 2013

* C.Hongetal.”B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for Availability and
Scale in Google’s SD-WAN”. In SIGCOMM 2018

* Traffic oblivious Routing:

* H. Racke "Optimal hierarchical decompositions for congestion minimization in networks”. In STOC
2008

* D. Applegate, E. Cohen "Making intra-domain routing robust to changing and uncertain traffic
demands: understanding fundamental tradeoffs”. In SIGCOMM 2003

* M. Chiesa et al. “Oblivious Routing in IP Networks”. In Transactions on Networking 2018
e Semi-oblivious routing:

* M. Hajiaghayi et al, "Semi-oblivious routing: lower bounds". In SODA 2007

e P.Kumar et al. ”Semi-Oblivious Traffic Engineering: The Road Not Taken”. In NSDI 2018



Recommended readings for paper #2 and #3

Scalability of the control-plane:

e T. Koponen et al. "Onix: A Distributed Control Platform for Large-scale Production Networks". In
OSDI 2010

* A. Curtis et al. "DevoFlow: scaling flow management for high-performance networks”. In
SIGCOMM 2011

Distributed routing:

* R. Gallager "A Minimum Delay Routing Algorithm Using Distributed Computation”. In
Transactions on Communications 1977

* N. Michael et al. "HALO: Hop-by-Hop Adaptive Link-State Optimal Routing". In ICNP 2013

Hash-based forwarding:

e /. Cao et al. "Performance of Hashing-Based Schemes for Internet Load Balancing". In INFOCOM
2000
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