Wireless Links

Yong Cui
Tsinghua University
@SIGCOMM 2018
Great success of wireless links

3G, 4G, 5G...

Wi-Fi

Bluetooth

RFIDs

swing card Warehouse Medical
Great success of wireless links

What kind of emerging wireless links can you imagine?

swing card Warehouse Medical
Emerging Wireless Links

- Underwater Links
- In-body links
- Low power IoT links
- Links over high speed mobility
Networking across Boundaries: Enabling Communication through the Water-Air Interface

In-body Backscatter Communication and Localization

PLoRa: A Passive Long-Range Data Networks from Ambient LoRa Transmissions

A Measurement Study on Multi-path TCP with Multiple Cellular Carriers on High-speed Rails
Networking across Boundaries: Enabling Communication through the Water-Air Interface

Francesco Tonolini, Fadel Adib
(MIT, USA)
Goal: Sending from water to air (cross boundary)
- RF signal: rapid attenuation in water
- Acoustic: reflect off the water’s surface
- Novel idea: Acoustic vibration + RF sensing
Challenges and Solutions

Challenge 1: minute surface vibrations of acoustic waves
Solution: **Millimeter wave into an FMCW radar** to sense very minute surface vibrations

Challenge 2: Ocean waves - disturb the water surface
Solution: Filter out ocean waves in **frequency domain**

Challenge 3: choose the right modulation schemes to match the wireless channel quality
Solution: Utilize the unique properties of the new communication modality, design a **power- and rate-optimal modulation** scheme
Implementation & Evaluation

- **Implementation**
 - Acoustic: 100Hz-200Hz
 - Modulation: OFDM
 - millimeter wave radar: Centered on 60GHz

- **Evaluation**
 - Two environments: water tank, swimming pool

- **Results**
 - Standard underwater bitrates up to 400bps

- **Potential points**
 - The bottleneck to cross the boundary?
 - Any novel technologies to improve the bandwidth, or achieve bidirectional comm.?
 - Do we have any other boundaries?
In-body Backscatter Communication and Localization

Deepak Vasisht, Guo Zhang (MIT, USA), Omid Abari (UWaterloo, Canada), Dina Katabi (MIT, USA), Hsiao-Ming Lu, Jacob Flanz (MGH, USA)
Existing In-body Localization methods

X-ray localization

MRI localization

They are expensive, painful and harmful to patients
Existing In-body Localization methods

GI tract

Consuming large energy on RF transmission, but capsules are too small to carry battery

Opportunity: Backscatter is promising for communication and localization
Challenge 1: Surface Interference

A large portion of the RF signal is reflected off the human surface.

How can we recognize the super weak reflected signal?

Solution 1: Using a non-linear tag to separate the backscatter reflections from all other reflections.
The Challenges and Solutions

Challenge 2: Signal Deflection

(the difference in speed between different medias causes the signal to significantly deflect)

Solution 2: Segmenting crooked paths to straight lines with linear splines
Implementation & Evaluation

- **Implementation:**
 - Devices: 4 USRPs, two for transmitters, two for receivers
 - Transmitted frequencies: 830MHz, 970MHz
 - Test targets: whole chicken, pork belly

- **System setup:**

- **Evaluation:**
 - Backscatter communication: 1-8cm corresponds to SNR 11.5 -17dB
 - Localization accuracy: average 1.4cm
PLoRa: A Passive Long-Range Data Networks from Ambient LoRa Transmissions

Yao Peng (NWU, China), Longfei Shangguan (Princeton, USA), Yue Hu, Yujie Qian, Xianshang Lin, Xiaojiang Chen, Dingyi Fang (NWU, China), Kyle Jamieson (Princeton, USA)
Motivation

Requirement of Smart Agriculture

Battery Free
Long Distance
Ambient Excitation

Key words: backscatter (battery free), ambient, long-range

One of the PLoRa Scenarios
Challenge 1: Packet detection

LoRa packets are composed of time varying signal and have different packet intervals

Solution 1: Downsampling ADC and cross-correlation
Challenge 2: Modulation

Modulate time-varying excitation signal into another standard LoRa chirp.

Solution 2: Blind modulated baseband signal with the incoming LoRa chirp.
The Challenges and Solutions

Challenge 3: Energy Management

The passive tag may soon lose its data due to its energy exhausted.

Solution 3: Putting forward a finite state machine to manage the tag state.
Implementation & Evaluation

Implementation:

- PLoRa Tags
- USRP 2954
- Commercial TX/Rx: LoRa Sx1276/LoRa Gateway

Evaluation:

- Maximum backscatter range: 1.1km
- Total energy consumption: 3.52μW
A Measurement Study on Multi-path TCP with Multiple Cellular Carriers on High Speed Rails

Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan Wang, Xiangxiang Wang, Meng Shen, Rashid Mijumbi
Can we have **High Speed**?

- **38,000 km**
- **310 km/h**
- **1.7 billion**
- **30%**

>300 km/h Length Speed Passenger Growing

High speed mobility VS High speed Internet
A measurement study on the TCP behaviors in HSPA+ networks on high-speed rails [INFOCOM 2015]
A Longitudinal Measurement Study of TCP Performance and Behavior in 3G/4G Networks over High Speed Rails [TON 2017]
A Measurement Study on Skype Voice and Video Calls in LTE Networks on High Speed Rails [IWQoS 2017]

Frequent handoff is the main cause of TCP performance degradation
Carrier Complementarity

Making use of the difference in handoff time

An example of two complementary carriers

CDF of inter-carrier handoff interval

To explore potential benefits of using Multi-path TCP (MPTCP)
Mice Flows

Metrics measured

- **Robustness**: If MPTCP outperforms *either* of the two single-TCP flows
- **Efficiency**: If MPTCP outperforms *both* single-TCP flows

FINDING: MPTCP cannot improve efficiency over TCP

FINDING: MPTCP improves robustness over TCP

FCT of mice flows (<1 MB)
M: Carrier M U: Carrier U
Elephant Flows

FINDING: MPTCP improves robustness, but not efficiency

- Reasons behind
 - Mice flow: inefficient sub-flow establishment
 - Elephant flow: inefficient congestion control and scheduling to frequent handoffs

- Metric: average rate during 100 seconds

- Variable: train speed and number of handoffs suffered

![Graph showing the ratio of Rpoorer, Rbetter, and Rtotal for different numbers of handoffs (No handoff, 0-6 handoffs, 6+ handoffs).]
Finding: MPTCP with two carriers
- Significant improvement in robustness
- Efficiency of MPTCP is far from satisfactory

Root causes: frequent handoffs
- Sub-flow establishment
- Scheduling, congestion control

Suggestions: Handoff detection/prediction
- Establish new sub-flows outside a predicted handoff
- Retransmit lost packet of handoff path via others
- Differentiate handoff and congestion. Coupled CC that is not loss-based. Or uncoupled!
ACK authors’ effort of the session

Chicken, water tank, or 1.1km distance?

Measurement for MPTCP

Train tickets in one day

SIM cards

22-month, 82,266 km, 2.8 TB data

Twice of The Earth circumference
So, it is going to be an exciting session!

4:30 pm - 6:10 pm

Tuesday, August 21, 2018