SIGCOMM Preview Session: Datacenter Networking

Alex C. Snoeren

Internet growth trends

- 1977: 111 hosts on Internet
- 1981: 213 hosts
- 1983: 562 hosts
- 1984: 1,000 hosts
- 1987: 10,000 hosts

(First SIGCOMM)

- 1989: 100,000 hosts
- 1992: 1,000,000 hosts (i.e., on the order of Google or FB)
- 2002: over 200 million hosts
- 2011: over 2 billion users
- 2014: mobile users surpasses desktop (~1.75B each)
- 2018: almost 4 billion users (earth population 7.6B)

Today's Internet: The "Cloud"

Massive-scale datacenters...

Deployed across the planet

Data center locations

We own and operate data centers around the world to keep our products running 24 hours a day, 7 days a week. Find out more about our data center locations, community involvement, and job opportunities in our locations around the world.

Americas

Berkeley County, South Carolina Council Bluffs, Iowa Douglas County, Georgia Jackson County, Alabama Lenoir, North Carolina Mayes County, Oklahoma Montgomery County, Tennessee Quilicura, Chile The Dalles, Oregon

Asia

Changhua County, Taiwan Singapore

Europe

Dublin, Ireland
Eemshaven, Netherlands
Hamina, Finland
St Ghislain, Belgium

[Google]

Inside: An engineering marvel

[Facebook's Fabric Topology]

- Regular topologies
 - Sophisticated link and switch technologies
- Hardware/software codesign
 - Custom protocols
- Stringent performance requirements
 - Low latency
 - Rapid failure recovery

A researcher's dream!

Many autonomous systems (ASes)	One administrative domain
Distributed control/routing	Centralized control and route selection
Single shortest-path routing	Many paths from source to destination
Hard to measure	Easy to measure, but lots of data
Standardized transport (TCP and UDP)	Many transports (DCTCP, pFabric,)
Innovation requires consensus (IETF)	Single company can innovate
"Network of networks"	"Supercomputer backplane"

Now an established area

- Topology and architecture
 Traffic engineering and
 - Traffic engineering and congestion control

[Al-Fares et al. SIGCOMM '08] One of this year's ToT winners!

[Roy et al. SIGCOMM '15]

8:40 am - 10:20 am l	Main-C	confe	rence S	Sessi	ion 4: l	Data	Cent	ter i	Networ	king

Session Chair: Dina Papagiannaki <i>(Google, USA)</i> Location: Vigadó, 2nd-Floor Ceremonial Hall					
8:40 am - 9:05 am	Masking Failures from Application Performance in Data Center Networks with Shareable Backup Dingming Wu, Yiting Xia, Xiaoye Steven Sun, Xin Sunny Huang, Simbarashe Dzinamarira, T. S. Eugene Ng (Rice, USA)				
9:05 am - 9:30 am	AuTO: Scaling Deep Reinforcement Learning to Enable Datacenter-Scale Automatic Traffic Optimization Li Chen, Justinas Lingys, Kai Chen (HKUST, China), Feng Liu (SAIC, China)				
9:30 am - 9:55 am	Leveraging Interconnections for Performance: The Serving Infrastructure of a Large CDN Florian Wohlfart (TU Munich, Germany), Nikolaos Chatzis, Caglar Dabanoglu (Akamai, Germany), Georg Carle (TU Munich, Germany), Walter Willinger (NIKSUN, USA)				
9:55 am - 10:20 am	Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Priorities Behnam Montazeri, Yilong Li (Stanford, USA), Mohammad Alizadeh (MIT, USA), John Ousterhout (Stanford, USA)				

Improved failure handling

ML for traffic engineering

A view of CP connectivity

