SIGCOMM 2018 Topic Preview: Applications and IoT

Hamed Haddadi Imperial College London

Session papers

11:00 am - 12:40	am Main-Conference Session 5: Applications and IoT	
Session Chair: Moh Location: Vigadó, 2	ammad Alizadeh (MIT, USA) Ind-Floor Ceremonial Hall	J
11:00 am - 11:25 am	AWStream: Adaptive Wide-Area Streaming Analytics Ben Zhang (Berkeley, USA), Xin Jin (JHU, USA), Sylvia Ratnasamy, John Wawrzynek, Edward A. Lee (Berkeley, USA)	5
11:25 am - 11:50 am	Chameleon: Video Analytics at Scale via Adaptive Configurations and Cross-Camera Correlations Junchen Jiang (Microsoft and UChicago, USA), Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen (Microsoft, USA), Ion Stoica (Berkeley, USA)	9
11:50 am - 12:15 pm	RF-Based 3D Skeletons Mingmin Zhao, Dina Katabi, Yonglong Tian, Hang Zhao, Mohammad Abu Alsheikh, Tianhong Li, Antonio Torralba, Rumen Hristov (MIT, USA)	5
12:15 pm - 12:40 pm	MUTE: Bringing IoT to Noise Cancellation Sheng Shen, Nirupam Roy, Junfeng Guan, Haitham Hassanieh, Romit Roy Choudhury (UIUC, USA)	6

Deep Neural Nets coz' supervised learning is hard..

AMUSO – SYRA HERALD JOURNAL O 121 CUS

How the brain works.

Area V4 •••• Higher level visual abstractions

Area V2

Primitive shape detectors

Area V1

Edge detectors

Retina

pixels

The brain activation

- Many neurons active simultaneously in the brain: around 1%
- The input is represented by the activation of a set of features that are not mutually exclusive.
- Can be exponentially more efficient than local representations

Training Neural Nets

- Unsupervised Learning for Deep Architectures
 - Pretty hard to train large RBMs, DBNs, etc
- Convolutional Neural Networks
 - Easier to train! (few inputs per neuron) helps gradients to propagate through so many layers (backpropagation)

output layer

Success metrics

Success metrics

- Classification Accuracy. (the number of correct predictions made as a ratio of all predictions made.)
- Logarithmic Loss. (a performance metric for evaluating the predictions of probabilities of membership to a given class)
- Area Under ROC Curve. (model's ability to discriminate between positive and negative classes)
- Confusion Matrix. (a table with predictions on the x-axis and accuracy outcomes on the y-axis. The cells of the table are the number of predictions made by a machine learning algorithm.)

IoT

It's thing, and it's connected to the internet!

It was just a dumb thing. Then we put a chip in it. Now it's a *smart* thing.

weputachipinit.tumblr.com

Data around us

- IoT devices
- Cyber Physical Systems

Efficiency In Buildings (BuildSys 2010), Zurich, Switzerland, November 2, 2010.

Trade-offs are hard

Security /Privacy

Information Utility

Bandwidth, CPU, Energy

Lots of Hype, but also plenty of opportunities for networking and system to have impact.

That's it folks

For more information, software, and papers: haddadi.github.io

We are hiring at all levels! www.imperial.ac.uk/SysAl

