
RDMA and Hardware Support
SIGCOMM Topic Preview 2018

Yibo Zhu
Microsoft Research

1



The (Traditional) Journey of Data

• This architecture had been working well until ~5 years ago
• Ethernet: 10Mbps à 100Mbps à 1Gbps à 10Gbps (until 2013 @ Microsoft)
• CPU: Moore’s Law

2

How app developers 
see the network

Under the hood



The End of Moore’s Law

• However, NIC bandwidth keeps increasing exponentially
• … à 40Gbps (2014) à 100Gbps (2017) à 400Gbps (?) 3

Image Source:
2018 IEEE International Solid-State 
Circuits Conference
“50 Years of Computer Architecture: 
from Mainframe CPUs to DNN TPUs 
and Open RISC-V”



CPU Starts to Become the Bottleneck

4

 0
 5

 10
 15
 20
 25
 30
 35
 40

4KB 16KB 64KB 256KB 1MB 4MB

Th
ro

ug
hp

ut
 (G

bp
s)

Message size

TCP

A simple test: 40Gbps NICs, state-of-the-art servers, 16 cores

Small messages à CPU is the bottleneck
Larger msgs à ~3 CPU 
cores are burnt by TCP

Sender Receiver

 0

 10

 20

TCP RDMA
(read/write)

RDMA
(send)

Ti
m

e 
to

 tr
an

sf
er

 2
KB

 (µ
s)

 0

 20

 40

 60

 80

 100

4KB 16KB 64KB 256KB 1MB 4MB
C

PU
 u

til
iz

at
io

n 
(%

)
Message size

TCP

The above test was done on Windows machines [DCQCN, SIGCOMM’15]; 
Linux machines show a similar trend [Sandstorm, SIGCOMM’14]



Solution: Hardware Offloading (from the CPU)

• Step 1: Offloading the network stack (layer 2 to layer 4)
• Representative solution: RDMA (Remote Direct Memory Access)
• Middleboxes are also offloaded to SmartNICs [VFP, NSDI’18]

• Step 2 (or 2a): Offloading application logic to NICs
• Storage replication / transactions [Hyperloop, SIGCOMM’18]
• High IOPS key value stores [KV-Direct, SOSP’17]

• Step 3 (or 2b): Offloading application logic to switches
• Consensus protocols [NOPaxos, OSDI’16]
• High IOPS key value stores [NetCache, SOSP’17]

5



RDMA (Remote Direct Memory Access)

6

Buffer A

Write local buffer at address A
to remote buffer at address B

Buffer B is filled

DMA

Buffer B DMA

Sender

Receiver

Allocate

Allocate

The whole kernel network stack is offloaded to NICs!



RDMA Outperforms TCP

7

RDMA single thread ~40Gbps RDMA CPU ~0% RDMA latency 1~2 µs

 0

 10

 20

TCP RDMA
(read/write)

RDMA
(send)

Ti
m

e 
to

 tr
an

sf
er

 2
KB

 (µ
s)

 0

 20

 40

 60

 80

 100

4KB 16KB 64KB 256KB 1MB 4MB

C
PU

 u
til

iz
at

io
n 

(%
)

Message size

TCP
RDMA

 0
 5

 10
 15
 20
 25
 30
 35
 40

4KB 16KB 64KB 256KB 1MB 4MB

Th
ro

ug
hp

ut
 (G

bp
s)

Message size

TCP
RDMA



More Challenging than It Sounds

• It is not trivial to port software logic into hardware
• E.g., the NIC has limited buffer à hard to implement the sending window 

used by TCP
• Solution: rate-based CC protocols [DCQCN, SIGOCMM’15][TIMELY, SIGCOMM’15]

• Low performance upon packet drops
• Solution: PFC or modified retransmission mechanism [IRN, SIGCOMM’18]

• Limited programmability: what is the best programming abstraction?
• Limited memory à limited number of “reliable” flows à scalability?

• Research opportunities

8



Back to the Big Picture

9

Buffer A

Control

DMA

Buffer B DMA

Sender

Receiver

Control

Control

Control

① Transport protocol for RDMA

② How does DMA work on PCIe?

③ How do we manage switches?

④ With NVM (Non-Volatile Memory), can 
RDMA NIC also offload the storage stack?



• Wed., 4:30PM Session, 1st paper

• Leveraging RDMA + NVM
• RDMA NIC directly reads/writes 

durable storage medium

• Turns storage replication and 
transactions into RDMA 
operations and bypasses CPU

• Up to 800x tail latency reduction

10



• Wed., 4:30PM Session, 2nd paper

• Commodity RDMA hardware runs 
E2E congestion control + PFC

• PFC can cause troubles in large-
scale deployment
• HoL blocking, fairness, deadlock…

• What is the minimum (feasible) 
NIC hardware change that can 
help us get rid of PFC?

11



12

• Wed., 4:30PM Session, 3rd paper

• The RDMA NICs and SmartNIC
rely on DMA via PCIe

• We really need to understand the 
PCIe behavior in order to get the 
best hardware offloading benefits

• Novel PCIe measurement tool 
and results



13

• Wed., 4:30PM Session, 4th paper

• We must manage switches
• E.g., rolling out RDMA would 

require additional switch features 
than running TCP

• The key for quick evolvement is 
to develop switch software just 
like common software

• Experience paper from Facebook 
on their switch OS
• BTW, check out SONiC by Microsoft



Exciting Area, Vast Research Opportunities

• Are we really done with RDMA transport protocols? 
• How about extending it from DC to WAN?

• New RDMA-based distributed systems, or new (network) hardware 
offloading architectures

• Hardware-software co-design: what is the right abstraction?
• Goal: expose maximum programmability while keep hardware performance
• It may depend on hardware platforms (FPGA vs. P4 ASIC vs. ARM/MIPS NPU)

14



What is Networking Like, 5 Years from Now?

• Today, networks are (dumb) pipes for moving data

• We have been building faster, wider and more reliable pipes

• Question: will the pipe still be dumb five years from now? Should it?

• I argue that we should build more “intelligence” into the pipe
• Opportunity: network hardware offloading (accelerating) distributed systems
• E.g., after the end of Moore’s Law, GPU shines for parallel computing / AI
• Can network hardware do the same for distributed systems?

15


