&
W()sf Queen Mary

University of London

Topic preview session 4:

SDN and Workloads

Steve Uhlig (QMUL)

ACM SIGCOMM, August 22, 2018

Talk objectives

. Introduce you to SDN

. Provide context for session, not

introduce/explain papers

. Provide some pointers to literature

Agenda

SDN primer
SDN: open problems
SDN: applications

Further reading

"
SDN: box view \6,@6/ Queen Mary

University of London

Beyond today’ s monolithic
network equipment Communication .

channel

Separation of control and data
plane through software modularity,
e.g., Linux

Do not change existing control

plane Software
Principles % |
- Communication channel

between forwarding engine and Hardware

remote controller

- Expose network equipment
capabilities, e.g., TCAM, QoS

SDN: network view

Network Application(s)

@ Open northbound API
[Controller Platform]

@ Open sfouthbouréd API

Network Infrastructure

SDN: Benefits

* Uniform API of managing the network from a
central software-based controller, e.g.,

| Trident]

* Extends virtualization techniques at multiple
layers, e.g., [FlowVisor]

* Shift from network hacks to applications,
e.g., traffic engineering, network monitoring
and security

i
What is OpenFlow? ‘&Q‘! Queen Mary

University of London

e The dominant realization of SDN

* Set of protocols and an API:
" Wire protocol (OF):
— Establish control sessions
- Structure of flow modification messages

— Statistics collection

- Switch structure (ports and tables)

* (Configuration/management protocol (OF-config):
- Based on NETCONF

— Allocate switch ports to controller

— Availability and failure behavior

OpenFlow 1.0

dh
WO

Principle: match-action-(monitor)

e Match headers:

defines flows
* Act on packets

e Monitor: counters

Queen Mary

University of London

. Ingress Ethernet VLAN |P TCP/UDP
e Pt [SA] DA | Type | 1D |Prioriy] SA] DA] Proto | 105 | Sic | Dst
(lassifier Action Statistics
Flow Table . . .
OF1.0style (lassifier Action Statistics
(lassifier Action Statistics
(lassifier Action Statistics
Physical Port .
Actions ALL
Forward _ CONTROLLER
Vrtual ™ ToaaL
TABLE
IN_PORT Mandatory Action
Drop
Virtual NORMAL Optional Action
Forward Port 71000
Enqueue
Modify Field

OpenKFlow controller
architecture

Applications

Replication Data Center Load
Scheduler Multitenancy Balancer

API (not standard)

Basic Services Infrastructure
Topology Path . :
Inventory Discovery Computation Event dispatching
w
R N GUI
Protocol Engines v
OpenFlow OF-Config CLI

FlowVisor (network partitioning)

Agenda

SDN primer
SDN: open issues
SDN: applications

Further reading

Open issues: monitoring

JQueen Mary

— University of London

* Issue: collect and analyse traffic at scale and in real-
time, e.g., [OpenTM

* Monitoring also called “telemetry”, see tomorrow’s
session [Sonata, Snapshot

OpenTM: Traffic Matrix Estimator for
OpenFlow Networks

Amin Tootoonchian, Monia Ghobadi, Yashar Ganjali
{amin,monia,yganjali}@cs.toronto.edu

Department of Computer Science
University of Toronto, Toronto, ON, Canada

Abstract. In this paper we present OpenTM, a traffic matrix estima-
tion system for OpenFlow networks. OpenTM uses built-in features pro-
vided in OpenFlow switches to directly and accurately measure the traffic
matrix with a low overhead. Additionally, OpenTM uses the routing in-
formation learned from the OpenFlow controller to intelligently choose
the switches from which to obtain flow statistics, thus reducing the load
on switching elements. We explore several algorithms for choosing which
switches to query, and demonstrate that there is a trade-off between
accuracy of measurements, and the worst case maximum load on indi-
vidual switches, i.e., the perfect load balancing scheme sometimes results
in the worst estimate, and the best estimation can lead to worst case load
distribution among switches. We show that a non-uniform distribution
querying strategy that tends to query switches closer to the destina-
tion with a higher probability has a better performance compared to the
uniform schemes. Our test-bed experiments show that for a stationary
traffic matrix OpenTM normally converges within ten queries which is
considerably faster than existing traffic matrix estimation techniques for
traditional IP networks.

Synchronized Network Snapshots

Nofel Yaseen

University of Pennsylvania University of P

John Sonchack

Vincent Liu

ennsylvania University of Pennsylvania

upenn.edu

ABSTRACT

When monitoring a network, operators rarely have a fine-
grained and complete view of the network’s state. Instead,
today’s network monitoring tools generally only measure a
single device or path at a time; whole-network metrics are
a of these Lie.an
afterthought. Such tools fail to fully answer a wide range
of questions. Is my load balancing algorithm taking advan-
tage of all available paths evenly? How much of my network
is y loaded? Is ion traffic s 2
‘These types of concurrent network behavior are challenging
to capture at fine gra ¢ as they involve coordina

upenn.edu upenn.edu

1 INTRODUCTION

As networks continue to grow in size and bandwidth, a de-
tailed understanding of their overall behavior is increasingly
difficult to come by. Consider the question: does my net-
work’s load balancing protocol balance the network’s load?
A definitive answer to this question (and others like it) is out
of the scope of traditional measurement tools.

In order to answer it, we would need visibility into the
fine-grained behavior of the entire network. Instead, the tar-
get of traditional tools like switch counter polling and packet
sampling are individual entities in the network. Comparison
of of different entities is difficult beyond just

across the entire network. At the same time, understanding
them is essential to the design of network switches, archi-
tectures, and protocols,

‘This paper presents the design of a Synchronized Network
Snapshot protocol. The goal of our primitive is the collection
of a network-wide set of measurements. To ensure that the

are meaningful, our design they
are both causally consistent and approximately synchronous.
We demonstrate with a Wedge100BF implementation the
feasibility of our approach as well as its many potential uses.

CCS CONCEPTS
« Networks — Network measurement; Network mon-
itoring; Programmable networks;

averages and long-term behavior. Slightly better are path-
level metrics like those gathered at the end host [42], through
Explicit Congestion Notification (ECN) [2], or In-band Net-
work Telemetry (INT) [22]. These path-level metrics provide
similar data as counters and packet sampling, but on the
level of entire paths; measurements from different paths are,
however, still only comparable at a coarse granularity.
Thus, when faced with questions about network-wide be-
havior, operators are forced to approximate the answer using
tangential, but more easily collectible measurements. In the
case of load balancing, they might redefine the definition
of balance to a purely local metric (e.g., monitoring packet
drops or buffer utilization for ‘high’ values) or look only at
average load. Similar workarounds exist for most questions

Sonata: Query-Driven Streaming Network Telemetry

Arpit Gupta*, Rob Harrison*, Marco Canini°,
Nick Feamster*, Jennifer Rexford*, Walter Willinger*

*Princeton University “KAUST *NIKSUN Inc.

ABSTRACT

Managing and securing networks requires collecting and
analyzing network traffic data in real time. Existing teleme-
try systems do not allow operators Lo express the range of
queries needed to perform management or scale to large traf-
fic volumes and rates. We present Sonata, an expressive and
scalable telemetry system that coordinates joint collection
and analysis of network traffic. Sonata provides a declarative
interface to express queries for a wide range of common
telemetry tasks; to enable real-time execution, Sonata parti-
tions each query across the stream processor and the data
plane, running as much of the query as it can on the network
switch, at line rate. To optimize the use of limited switch
memory, Sonata dynamically refines each query to ensure
that available resources focus only on traffic that satisfies the
query. Our evaluation shows that Sonata can support a wide
range of telemetry tasks while reducing the workload for the
stream processor by as much as seven orders of magnitude
compared to existing telemetry systems.

Query,; Query, ... QT”

Stream
Processor’

itch Packet

Packets In Packets Out

Results

Runtime

Switch
Configs

Figure 1: Sonata Architecture.

switches alone can scale Lo high traffic rates, but they give
up expressiveness to achieve this scalability. For example,
Marple [32] and OpenSketch [52], can perform telemetry
tasks by executing queries solely in the data plane at line
the queries that they can support arc limited by the
ies and memory in the data plane.

Open issues: control/data
plane behavior

&Q_,DJ Queen Mary

University of London

OFLOPS: An Open Framework
for OpenFlow Switch Evaluation

Issue: proper behaviour despite
decoupling of control and data plane

Charalampos Rotsos!, Nadi Sarrar?, Steve Uhlig:’,
Rob Sherwood**, and Andrew W. Moore!

! University of Cambridge
2 TU Berlin/ T-Labs
3 Queen Mary, University of London
4 Big Switch Networks

Abstract. Recent efforts in software-defined networks, such as OpenFlow, give
unprecedented access into the forwarding plane of networking equipment. When
building a network based on OpenFlow however, one must take into account the
performance characteristics of particular OpenFlow switch implementations. In
this paper, we present OFLOPS, an open and generic software framework that
permits the development of tests for OpenFlow-enabled switches, that measure
the capabilities and bottlenecks between the forwarding engine of the switch
and the remote control application. OFLOPS combines hardware instrumentation
with an extensible software framework.

We use OFLOPS to evaluate current OpenFlow switch implementations and
make the following observations: (i) The switching performance of flows depends
on applied actions and firmware. (ii) Current OpenFlow implementations differ
substantially in flow updating rates as well as traffic monitoring capabilities. (iii)
Accurate OpenFlow command completion can be observed only through the data
plane. These observations are crucial for understanding the applicability of Open-
Flow in the context of specific use-cases, which have requirements in terms of
forwarding table consistency, flow setup latency, flow space granularity, packet

e (Goal: Control/data

plane congruence [Consistency

Performance/overhead,

e.g., [DevoFlow

Testing and troubleshooting,

e.g., [OFLOPS,CASTAN]

modification types, and/or traffic monitoring abilities.

Automated Synthesis of Adversarial Workloads
for Network Functions

Luis Pedrosa

Rishabh Iyer

Arseniy Zaostrovnykh

EPFL EPFL EPFL

luis.pedrosa@epfl.ch

Jonas Fietz
EPFL
jonas.fietz@epfl.ch

ABSTRACT

Software network functions promise to simplify the deploy-
ment of network services and reduce network operation cost.
However, they face the challenge of unpredictable perfor-
mance. Given this performance variability, it is imperative
that during deployment, network operators consider the per-
formance of the NF not only for typical but also adversarial
workloads. We contribute a tool that helps solve this chal-
lenge: it takes as input the LLVM code of a network function
and outputs packet sequences that trigger slow execution
paths. Under the covers, it combines directed symbolic execu-
tion with a sophisticated cache model to look for execution
paths that incur many CPU cycles and involve adversarial
memory-access patterns. We used our tool on 11 network
functions that implement a variety of data structures and dis-
covered workloads that can in some cases triple latency and
cut throughput by 19% relative to typical testing workloads.
KEYWORDS

Network Function Performance; Adversarial Inputs

rishabh.iyer@epfl.ch

arseniy.zaostrovnykh@epfl.ch

Katerina Argyraki
EPFL
katerina.argyraki@epfl.ch

comes with the challenge of unpredictable performance.
While hardware middleboxes process packets through ASICs
that typically yield stable performance, software NFs process
packets on general-purpose CPUs, which may yield vari-
able performance. This variability provides an attack surface
for adversaries seeking to degrade NF performance, e.g., by
sending specially crafted packet sequences that significantly
increase the per-packet latency and/or decrease throughput.
Hence, when network operators deploy a new NF, they need
to know its performance in the face of not only typical but
also adversarial workloads; predicting NF performance as-
suming simple workloads, e.g., small packets with a uniform
or Zipfian distribution of destination IP addresses [15], is
useful but insufficient.

However, finding adversarial workloads in NFs—or any
other non-trivial piece of software—can be hard. Different
packet sequences can traverse different execution paths, with
different performance envelopes. In some scenarios, finding
the “bad paths” and the workloads that exercise them is

relativaly eacy @0 when state i stared in a tree in which 12

en issues: network updates

Queen Mary

@QD University of London

Issue: handling network updates, e.g., [PLDI’15], while
guaranteeing specific properties

e (Correctness
* Consistency
* Ordering

* Data plane

Efficient Synthesis of Network Updates

Jedidiah McClurg Hossein Hojjat

CU Boulder Cornell University
jedidiah.mcclurg@colorado.edu hojjat@cornell.edu

Abstract

Software-defined networking (SDN) is revolutionizing the net-
working industry, but current SDN programming platforms do not
provide automated mechanisms for updating global configurations
on the fly. Implementing updates by hand is challenging for SDN
programmers because networks are distributed systems with hun-
dreds or thousands of interacting nodes. Even if initial and final
configurations are correct, naively updating individual nodes can
lead to incorrect transient behaviors, including loops, black holes,
and access control violations. This paper presents an approach for
automatically synthesizing updates that are guaranteed to preserve
specified properties. We formalize network updates as a distributed
programming problem and develop a synthesis algorithm based on
counterexample-guided search and incremental model checking.
We describe a prototype implementation, and present results from
experiments on real-world topologies and properties demonstrating
that our tool scales to updates involving over one-thousand nodes.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification—Formal methods;
D.2.4 [Software Engineering]: Software/Program Verification
Model checking; F.3.1 [Logics and Meanings of Programs):
Specifying and Verifying and Reasoning about Programs—

Pavol Cemy Nate Foster

CU Boulder Cornell University
pavol.cerny@colorado.edu jnfoster@cs.cornell.edu

been used in production enterprise, datacenter, and wide-area net-
works, and new deployments are rapidly emerging.

Much of SDN’s power stems from the controller’s ability to
change the global state of the network. Controllers can set up end-
to-end forwarding paths, provision bandwidth to optimize utiliza-
tion, or distribute access control rules to defend against attacks.
However, implementing these global changes in a running network
is not easy. Networks are complex systems with many distributed
switches, but the controller can only modify the configuration of
one switch at a time. Hence, to implement a global change, an
SDN programmer must explicitly transition the network through
a sequence of intermediate configurations to reach the intended fi-
nal configuration. The code needed to implement this transition is
tedious to write and prone to error—in general, the intermediate
configurations may exhibit new behaviors that would not arise in
the initial and final configurations.

Problems related to network updates are not unique to SDN.
Traditional distributed routing protocols also suffer from anomalies
during periods of reconvergence, including transient forwarding
loops, blackholes, and access control violations. For users, these
anomalies manifest themselves as service outages, degraded per-
formance, and broken connections. The research community has
developed techniques for preserving certain invariants during up-

Open issues: security

Issue: several points to be secured against attacks, e.g.,
|Secsurvey, SecSDN]

 (Controller

* Communication channels: southbound (network)

and northbound (applications)
* Virtual planes, e.g., [FlowVisor]

* Data plane

See “Network Verification” session

Agenda

SDN primer
SDN: open 1ssues
SDN: applications

Further reading

Applications: traffic
engineering

&
W()sf Queen Mary

University of London

* Using SDN to steer traffic inside a multi-site
network, e.g., [B4

B4: Experience with a Globally-Deployed
Software Defined WAN

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Holzle, Stephen Stuart and Amin Vahdat
Google, Inc.
b4-sigcomm@google.com

ABSTRACT

We present the design, implementation, and evaluation of B4, a pri-
vate WAN connecting Google’s data centers across the planet. B4
has a number of unique characteristics: i) massive bandwidth re-
quirements deployed to a modest number of sites, ii) elastic traf-
fic demand that seeks to maximize average bandwidth, and iii) full
control over the edge servers and network, which enables rate limit-
ing and demand measurement at the edge. These characteristics led
to a Software Defined Networking architecture using OpenFlow to
control relatively simple switches built from merchant silicon. B4’s
centralized traffic engineering service drives links to near 100% uti-
lization, while splitting application flows among multiple paths to
balance capacity against application priority/demands. We describe
experience with three years of B4 production deployment, lessons
learned, and areas for future work.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocols

Keywords

Centralized Traffic Engineering; Wide-Area Networks; Software-
Defined Networking; Routing; OpenFlow

Such overprovisioning delivers admirable reliability at the very real
costs of 2-3x bandwidth over-provisioning and high-end routing
gear.

We were faced with these overheads for buildinga WAN connect-
ing multiple data centers with substantial bandwidth requirements.
However, Google’s data center WAN exhibits a number of unique
characteristics. First, we control the applications, servers, and the
LANs all the way to the edge of the network. Second, our most
bandwidth-intensive applications perform large-scale data copies
from one site to another. These applications benefit most from high
levels of average bandwidth and can adapt their transmission rate
based on available capacity. They could similarly defer to higher pri-
ority interactive applications during periods of failure or resource
constraint. Third, we anticipated no more than a few dozen data
center deployments, making central control of bandwidth feasible.

We exploited these properties to adopt a software defined net-
working (SDN) architecture for our data center WAN interconnect.
We were most motivated by deploying routing and traffic engineer-
ing protocols customized to our unique requirements. Our de-
sign centers around: i) accepting failures as inevitable and com-
mon events, whose effects should be exposed to end applications,
and ii) switch hardware that exports a simple interface to program
forwarding table entries under central control. Network protocols
could then run on servers housing a variety of standard and custom

plications: monitoring

___ University of London

* Requires advanced data structures, e.g.,
Sketches ([OpenSketch] and [ElasticSketch

Software Defined Traffic Measurement with OpenSketch

Minlan Yu®

Abstract

Most network management tasks in software-defined
networks (SDN) involve two stages: measurement and
control. While many efforts have been focused on net-
work control APIs for SDN, little attention goes into
measurement. The key challenge of designing a new
measurement API is to strike a careful balance between
generality (supporting a wide variety of measurement
tasks) and efficiency (enabling high link speed and low
cost). We propose a software defined traffic measure-
ment architecture OpenSketch, which separates the mea-
surement data plane from the control plane. In the
data plane, OpenSketch provides a simple three-stage
pipeline (hashing, filtering, and counting), which can be
implemented with commodity switch components and
support many measurement tasks. In the control plane,
OpenSketch provides a measurement library that auto-
matically configures the pipeline and allocates resources
for different measurement tasks. Our evaluations of real-
world packet traces, our prototype on NetFPGA, and
the implementation of five measurement tasks on top of
OpenSketch, demonstrate that OpenSketch is general, ef-
ficient and easily programmable.

Lavanya Jose*
T University of Southern California

Rui Miao®
* Princeton University

work management, it is important to design and build
a new software-defined measurement architecture. The
key challenge is to strike a careful balance between gen-
erality (supporting a wide variety of measurement tasks)
and efficiency (enabling high link speed and low cost).

Flow-based measurements such as NetFlow [2] and
sFlow [42] provide generic support for different mea-
surement tasks, but consume too resources (e.g., CPU,
memory, bandwidth) [28, 18, 19]. For example, to iden-
tify the big flows whose byte volumes are above a thresh-
old (i.e., heavy hitter detection which is important for
traffic engineering in data centers [6]), NetFlow collects
flow-level counts for sampled packets in the data plane.
A high sampling rate would lead to too many counters,
while a lower sampling rate may miss flows. While there
are many NetFlow improvements for specific measure-
ment tasks (e.g., [48, 19]), a different measurement task
may need to focus on small flows (e.g., anomaly detec-
tion) and thus requiring another way of changing Net-
Flow. Instead, we should provide more customized and
dynamic measurement data collection defined by the soft-
ware written by operators based on the measurement re-
quirements; and provide guarantees on the measurement
accuracy.

Elastic Sketch: Adaptive and Fast Network-wide

Measurements
Tong Yang Jie Jiang Peng Liu
Peking University Peking University Peking University
yangtongemail@gmail.com jie jlang@pku.edu.cn liu.peng@pku.edu.cn
Qun Huang Junzhi Gong Yang Zhou
Institute Of Computing Peking University Peking University
Technology, CAS gongjunzhi@pku.edu.cn zhou.yang@pku.edu.cn
huangqun@ict.ac.cn
Rui Miao Xiaoming Li Steve Uhlig
Alibaba Group Peking University Queen Mary University of London
miao.rui@alibaba-inc.com Ixm@pku.edu.cn steve.uhlig@quml.ac.uk
ABSTRACT KEYWORDS

When network is undergoing problems such as congestion,
scan attack, DDoS attack, etc., measurements are much more
important than usual. In this case, traffic characteristics in-
cluding available bandwidth, packet rate, and flow size dis-
tribution vary drastically, significantly degrading the perfor-
mance of measurements. To address this issue, we propose
the Elastic sketch. It is adaptive to currently traffic char-
acteristics. Besides, it is generic to measurement tasks and
platforms. We implement the Elastic sketch on six platforms:
P4, FPGA, GPU, CPU, multi-core CPU, and OVS, to process
six typical measurement tasks. Experimental results and the-
oretical analysis show that the Elastic sketch can adapt well
to traffic characteristics. Compared to the state-of-the-art,
the Elastic sketch achieves 44.6 ~ 45.2 times faster speed
and 2.0 ~ 273.7 smaller error rate.

Sketches; Network measurements; Elastic; Compression;
Generic

ACM Reference Format:

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang
Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch:
Adaptive and Fast Network-wide Measurements. In SIGCOMM ’18:
SIGCOMM 2018, August 20-25, 2018, Budapest, Hungary. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3230543.3230544

1 INTRODUCTION

1.1 Background and Motivation

Network measurements provide indispensable information
for network operations, quality of service, capacity planning,
network accounting and billing, congestion control, anom-
alv detection in data centers and backbone networks [1-91.

.{ Queen Mar

Agenda

SDN primer
SDN: open 1ssues
SDN: applications

Further reading

Further reading

[Trident] Kai1 Gao et al. Trident: Toward a Unified SDN
Programming Framework with Automatic Updates. Proc. of
ACM SIGCOMM, 2018.

[FlowVisor] R. Sherwood et al. Can the production network be
the testbed? Proc. of ACM OSDI, 2010.

[OpenTM] A. Tootoonchian et al. OpenTM: traffic matrix
estimator for OpenFlow networks. Proc. of PAM, 2010.

[Sonata] A. Gupta et al. Sonata: Query-Driven Streaming
Network Telemetry. Proc. of ACM SIGCOMM, 2018.

[Snapshot] N. Yaseen et al. Synchronized Network Snapshots.
Proc. of ACM SIGCOMM, 2018.

[PLDI’15] J. McClurg et al. Efficient synthesis of network
updates. Proc. of ACM PLDI, 2015.

[OFLOPS] C. Rotsos et al. OFLOPS: an open framework for
openflow switch evaluation. Proc. of PAM, 2012.

Further reading

[CASTAN] L. Pedrosa et al. Automated Synthesis of Adversarial
Workloads for Network Functions. Proc. of ACM
SIGCOMM, 2018.

[B4] S. Jain et al. B4: experience with a globally-deployed
software defined WAN. Proc. of ACM SIGCOMM, 2013.

[OpenSketch] M. Yu et al. Software Defined Traffic
Measurement with OpenSketch. Proc. of USENIX NSDI,
2013.

[Elastic] T. Yang et al. Elastic sketch: Adaptive and fast
network-wide measurements. Proc. ACM SIGCOMM, 2018.

[Consistency] P. Zhang et al. Mind the Gap: Monitoring the
Control-Data Plane Consistency in Software Defined
Networks. Proc. of ACM CoNEXT, 2016.

[DevoFlow] A. Curtis et al. DevoFlow: scaling flow
management for high-performance networks. Proc. of ACM

SIGCOMM, 2011. 20

Further reading

[Survey] D. Kreutz et al. Software-defined networking. A
comprehensive survey. Proc. of the IEEE, 2015.

[Secsurvey] A. Akhunzada et al. Securing software defined
networks: taxonomy, requirements, and open issues. IEEE
Communications Magazine, 2015.

[SecSDN] S. Al1 et al. 4 Survey of Securing Networks Using
Software Defined Networking. IEEE Transactions on Reliability,
2015.

21

