Network Verification

[A preview for SIGCOMM 2018]

David Walker

2N PRINCETON
& UNIVERSITY

Weather Service suffers ‘major network
issue,” warning system compromised

By Jason Samenow July 13, 2016 &% Email the author

National Weather Service forecast office in Tallahassee, Fla. (NWS)

As severe thunderstorms peppered the central United States today, a
major systems outage impeded the National Weather Service from

issuing forecasts and warnings.

Friday's Widespread Internet Outage
in Japan

August 26, 2017

Yesterday Japan experienced the Internet equivalent of rolling blackouts.
From around 12:22 local time into the late-afternoon, dozens of
prominent websites, apps, and services were unavailable. J#£R
(connection issues) trended on Twitter, and DownDetector.jp had a field
day.

United says router issue responsible

for grounding all flights

Southwest CEO: Router
failure that grounded
flights equated to 'once-

in-a-thousand-year flood'

)
¥ Conor Shine, Aviation Writer Y [

South Africa: FNB solves crippling
connectivity issues

July 25, 2016 Finance, Southern Africa, Top Stories

W Tweet (0 share | 118 G+ Pinit

First National Bank (FNB) has
confirmed that it has resolved
the connectivity issue that has
plagued its customers since 24
July, 2016. On 25 July 2016
FNB confirmed, via a media
statement, that it was aware of

intermittent connectivity issues.

According to Mo Hassem, FNB

Many FNB customers have been unable to access many

account features. (Image Source: signededition.co.za). Chief Information Officer, the
network outage was caused by

an upgrade made to the network; however, Hassem did not mention the finer details of

the upgrade.

Control Plane:
e the algorithms that make routing
decisions
* in traditional networks:
e distributed protocols
» defined by device configs
* in SDN networks:
e centralized
* defined by SDN programs

Data Plane

* implements routes

» defined by a series of
match-action tables

/
A
\
I E B EEEN
‘

v v
D Middleboxes
D * Many services:

v
-—o.
\< * Firewalls, intrusion detection
D D * Load balancers, WAN optimizers

= . s
S — * Application caches
8 oe8

_ .

Data Plane Verification
e gather single DP snapshot
* analyze path properties
* reachability
* non-reachability
* no black holes
* no loops
* quantitative properties
* congestion
* failure probabilities

Example Systems

e HSA [NSDI “12]

* Veriflow [NSDI ‘13]

e Atomic predicates [ICNP ‘13]

* Divide-and-conquer [NSDI ‘14]

* Exploiting symmetry [POPL’16]

* Probabilistic reasoning [POPL ‘17]

Current Status
* Highly scalable
* up to ~10,000 switches in less
than a minute [NSDI ‘14]

* Industry-ready; start-ups

* Verification of static, stateless
data planes for non-quantitative
properties is a solved problem

Control Plane Verification

Less well understood

Less scalable

Trade-offs between model
accuracy, properties and
scalability

In traditional networks
 Model the configurations
* Model the environment
e possible faults
e possible external messages
* \Verify path properties of all
data planes produced

Examples

ARC [SIGCOMM ’16]
ERA [OSDI “16]

MineSweeper [SIGCOMM ‘17]
Scaling:

depends on the policy,
topology, protocols,
properties

_ "
I E B EEEN

Middleboxes

 Middleboxes have more
complex computing demands

v v
— @ — @
. d ft teful
S ./ and are often statefu
O
o

88—
2m
@
./

 Much more research required
but see, eg, [NSDI ‘17]

L]
%

./

@ SIGCOMM 2018

p4v: Practical Verification for Programmable Data Planes

Jed Liu William Hallahan Cole Schlesinger Milad Sharif Jeongkeun Lee
Barefoot Networks Yale University Barefoot Networks Barefoot Networks Barefoot Networks
Ithaca, NY, USA New Haven, CT, USA Santa Clara, CA, USA Santa Clara, CA, USA Santa Clara, CA, USA
Robert Soulé Han Wang Calin Cascaval Nick McKeown Nate Foster
University of Lugano Barefoot Networks Barefoot Networks Stanford University Cornell University
Lugano, Switzerland Santa Clara, CA, USA Santa Clara, CA, USA Stanford, CA, USA Ithaca, NY, USA
ABSTRACT 1 INTRODUCTION

We present the design and implementation of p4v, a prac-
tical tool for verifying data planes described using the P4
programming language. The design of p4v is based on clas-
sic verification techniques but adds several key innovations
including a novel mechanism for incorporating assumptions
about the control plane and domain-specific optimizations
which are needed to scale to large programs. We present case
studies showing that p4v verifies important properties and
finds bugs in real-world programs. We conduct experiments
to quantify the scalability of p4v on a wide range of addi-
tional examples. We show that with just a few hundred lines
of control-plane annotations, p4v is able to verify critical
safety properties for switch.p4, a program that implements
the functionality of on a modern data center switch, in under
three minutes.

CCS CONCEPTS

« Networks — Programming interfaces: - Software and its
engineering — Software verification;

KEYWORDS

Programmable data planes, P4, verification.

Suppose you wanted to verify the correctness of a network
data plane. How would you do it? One approach, which
is widely used today, is to rely on exhaustive testing—ie.,
generate a set of input packets and test whether the device
produces the expected outputs. Testing is expensive, since
modern devices handle dozens of different packet formats
and protocols, each requiring distinct test inputs. But with a
conventional device these costs are paid only once, because
its capabilities are “baked in" at manufacturing time and
cannot be changed by programmers.

Recently, the field has started to shift to more flexible plat-
forms in which data-plane functionality is not controlled
by vendors but can be defined by programmers. The idea
is that the programmer describes the functionality of the
device using a program in a domain-specific language such
as P4 [5, 44, 45], and the compiler generates an efficient im-
plementation for the underlying target device. This approach
not only facilitates rapid innovation, since new protocols can
be deployed without having to spin new hardware, it also
opens up opportunities for novel uses of the network—e.g., in-
band network telemetry [26] and in-network caching [28, 29]
to name a few. While increased programmability offers ben-
efits, it also creates challenges related to correctness.

Debugging P4 programs with Vera

Radu Stoenescu Dragos Dumitrescu

Matei Popovici Lorina Negreanu

Costin Raiciu
University Politehnica of Bucharest
firstname.lastname@cs.pub.ro

ABSTRACT

We present Vera, a tool that verifies P4 programs using sym-
bolic execution. Vera automatically uncovers a number of
common bugs including parsing/deparsing errors, invalid
memory accesses, loops and tunneling errors, among others.
Vera can also be used to verify user-specified properties in a
novel language we call NetCTL.

To enable scalable, exhaustive verification of P4 program
snapshots, Vera automatically generates all valid header lay-
outs and uses a novel data-structure for match-action pro-
cessing optimized for verification. These techniques allow
Vera to scale very well: it only takes between 5s-15s to track
the execution of a purely symbolic packet in the largest P4
program currently available (6KLOC) and can compute SEFL
model updates in milliseconds. Vera can also explore multi-
ple concrete dataplanes at once by allowing the programmer
to insert symbolic table entries; the resulting verification
highlights possible control plane errors.

We have used Vera to analyze many P4 programs including
the P4 tutorials, P4 programs in the research literature and
the switch code from https://p4.org. Vera has found several
bugs in each of them in seconds/minutes.

to network functionality can introduce bugs that may cause
great damage. Recently, faulty routers in two airline net-
works have grounded airplanes for days (for both Delta and
Southwest Airlines), showing just how disruptive the effects
of incorrect network behavior can be. Given the momentum
behind programmable networks, we expect such faults and
many others will cripple programmable networks.

In this paper, we argue that dataplane programs should
be verified before deployment to enable safe operation. We
present Vera, a verification tool that enables debugging of P4
programs both before deployment and at runtime. At its core,
Vera translates P4 to SEFL, a network language designed for
verification, and relies on symbolic execution with Symnet
[31] to analyze the behavior of the resulting program. Vera
incorporates a set of novel techniques that together enable
scalable and easy-to-use P4 verification.

Vera exhaustively verifies a snapshot of a running P4 pro-
gram (ie. the program and a snapshot of all its table rules):
it uses the parser of the P4 program to generate all parsable
packet layouts (e.g. header combinations), and makes all
header fields symbolic (i.e. they can take any value). It then
tracks the way these packets are processed by the program,
following all branches to completion. To improve scalabil-

Verifying P4

Is a P4 program a
data plane program
or a control plane
program?

Verifying P4

It is a bit of both!

P4 programs connect a
series of data plane
match-action tables
together. But those
tables are populated by
the control plane
during execution.

Verifying P4

One key problem
involves dealing with
the unknown table
contents

A second problem
involves scaling
analysis to complex P4
programs and
networks.

Primary Techniques

P4v: Verification
Condition Generation

Vera: Symbolic
Execution

Learning More

Weakest Preconditions/Hoare Logic

* C. A R.Hoare. An Axiomatic Basis for Computer Programming. CACM 12, 10. 1969.
* Edsger W. Dijkstra. Guarded Commands, Nondeterminacy, and Formal Derivation of Programs. CACM 18, 8. 1975.

* Cormac Flanagan and James B. Saxe. Avoiding Exponential Explosion: Generating Compact Verification Conditions.
POPL 2001.

* Microsoft Research. Dafny tutorial. https://rise4fun.com/Dafny/tutorial

Symbolic Execution
* J. C. King. Symbolic execution and program testing. CACM, 19(7). 1976.

* Christian Cadar, Daniel Dunbar, Dawson Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. OSDI 2008. See also: http://klee.github.io/publications/

A Comparison:

* loannis T. Kassios, Peter Miiller, and Malte Schwerhoff. Comparing Verification Condition Generation with Symbolic
Execution: An Experience Report. VSTTE 2012.

@ SIGCOMM 2018

Ryan Beckett

Princeton University

Ratul Mahajan

Intentionet

Abstract— We develop an algorithm capable of compress-
ing large networks into a smaller ones with similar control
plane behavior: For every stable routing solution in the large,
original network, there exists a corresponding solution in
the compressed network, and vice versa. Our compression
algorithm preserves a wide variety of network properties
including reachability, loop freedom, and path length. Con-
sequently, operators may speed up network analysis, based
on simulation, emulation, or verification, by analyzing only
the compressed network. Our approach is based on a new
theory of control plane equivalence. We implement these
ideas in a tool called Bonsai and apply it to real and synthetic
networks. Bonsai can shrink real networks by over a factor
of 5 and speed up analysis by several orders of magnitude.

1 INTRODUCTION

Configuration errors are a leading cause of network outages
and security breaches [2, 20, 27, 32, 34, 39]. For instance, a
recent misconfiguration disrupted Internet connectivity for
millions of users in the USA for over 1.5 hours, and similar
incidents last year impacted users in Japan, India, Brazil,
Azerbaijan, and beyond [6].

Control Plane Compression

Aarti Gupta

Princeton University

David Walker

Princeton University

hundred devices—far short of the 1000+ devices that are used
to operate many modern data centers.

In this paper, we tackle these problems by defining a new
theory of control plane equivalence and using it to compress
large, concrete networks into smaller, abstract networks with
equivalent behavior. Because our compression techniques
preserve many properties of the network control plane, in-
cluding reachability, path length, and loop freedom, analysis
tools of all kinds can operate (quickly) on the smaller net-
works, rather than their large concrete counterparts. In other
words, this theory is an effective complement to ongoing
work on network analysis, capable of helping accelerate a
wide variety of analysis tools. Moreover, because our trans-
formations are bisimulations, rather than over- or under-
approximations, tools built on our theory can avoid both
unsound inferences and false positives.

Intuitively, the reason it is possible to compress control
planes in this fashion is that large networks tend to contain
quite a bit of structural symmetry—if not, they would be even
harder to manage. For instance, many spine (or leaf or aggre-
gation) routers in a data center may be similarly configured;
and, as we show later, symmetries exist in backbone network
as well. Recently. Plotkin et al [35] exploited similar intu-

Verifying big, complicated
control planes is costly.

Most CP verification techniques
scale non-linearly, some
exponentially in the worst case

Bonsai .
...... N i
[|

Instead, (quickly) generate
a small, similar network
and verify the smaller
network.

@ SIGCOMM 2018

Microboxes: High Performance NFV with Customizable,
Asynchronous TCP Stacks and Dynamic Subscriptions

Guyue Liu", Yuxin Ren", Mykola Yurchenko®,
K K. Ramakrishnan’, Timothy Wood*
*George Washington University, "University of California, Riverside

ABSTRACT

Existing network service chaining frameworks are based on
a “packet-centric” model where each NF in a chain is given
every packet for processing. This approach becomes both
inefficient and inconvenient for more complex network func-
tions that operate at higher levels of the protocol stack. We
propose Microboxes, a novel service chaining abstraction
designed to support transport- and application-layer middle-
boxes, or even end-system like services. Simply including a
TCP stack in an NFV platform is insufficient because there is
a wide spectrum of middlebox types-from NFs requiring only
simple TCP bytestream reconstruction to full endpoint termi-
nation. By exposing a publish/subscribe-based API for NFs
to access packets or protocol events as needed, Microboxes
eliminates redundant processing across a chain and enables a
modular design. Our implementation on a DPDK-based NFV
framework can double throughput by consolidating stack op-
erations and provide a 51% throughput gain by customizing
TCP processing to the appropriate level.

140 mos-8KB ——
120 | fwd-8kB - ©~
100 | mMos-64B =——t—
80 F fwd-648 - A~

60
40

Processing Latency (us)

4
#NFs
Figure 1: Repeated TCP stack processing in a chain of

mOS NFs can cause unnecessarily high delay.

1 INTRODUCTION

Today's enterprise and wide-area networks are filled with
middleboxes [27] providing a wide range of functionality
from simple firewalls to complex Evolved Packet Core (EPC)
functions in cellular networks. Network Function Virtual-
ization (NFV) platforms provide high performance packet
processing by leveraging kernel bypass I/O libraries such
as DPDK [1] and netmap [25]. However, these systems are

Observation:

It is costly to repeat TCP processing
at each step in the chain.

Solution:

Microboxes: A new event-based
architecture for middlebox
construction.

Primary contribution:

Improved performance

Challenges:

Under what conditions is
microbox parallelization safe?

An Opportunity:

The microbox architecture

e simplifies middlebox
programming

* helps identify common safety
properties

Verification of microboxes may be
more tractable than verification
of general-purpose code.

General lesson: Good
programming environments
provide constraints that simplify
reasoning about programs.

./. — B

- -Y

8 g

v v

Have fun at the
SIGCOMM

. - D ‘ B — @ Verification Session

D X. . [2:10PM]
g DID
R o

