
Proprietary + Confidential

QUIC CPU Performance

Can HTTP/3 be as efficient as HTTP/2 and HTTP 1.1?

SIGCOMM EPIQ 2020, Presented by Ian Swett

Proprietary + Confidential

What are QUIC and
HTTP/3?

Proprietary + Confidential

QUIC is a transport

Always encrypted end-to-end
Multistreaming transport with no head of line blocking
0RTT connection establishment
Better loss recovery and flexible congestion control
Supports mixing reliable and unreliable transport features
Improved privacy and reset resistance
Connection migration

QUIC is an alternative to TCP+TLS that provides reliable data delivery

Proprietary + Confidential

HTTP over QUIC (aka gQUIC)

HTTP/2-like framing using HPACK

TLS

HTTP 1.1 or HTTP/2

TCP

IP

UDP

gQUIC

HTTP over gQUIC

QUIC Crypto

Proprietary + Confidential

HTTP/3: The next version of HTTP

TLS

HTTP 1.1 or HTTP/2

TCP

IP

UDP

gQUIC

HTTP over gQUIC

QUIC Crypto

UDP

IETF QUIC

HTTP/3

TLS 1.3

Proprietary + Confidential

IETF:
specifications in-progress, RFCs likely in 2021

Implementations:
Apple, Facebook, Fastly, Firefox, F5, Google, Microsoft ...

Server deployments have been going on for a while
Akamai, Cloudflare, Facebook, Fastly, Google …

Clients are at different stages of deployment
Chrome, Firefox, Edge, Safari
iOS, MacOS

Chrome experimenting in Stable

QUIC Status

https://quicwg.org/

Proprietary + Confidential

Background

Proprietary + Confidential

Target Workload: DASH video streaming

Status Quo: HTTP 1.1 over TLS

DASH clients send a sequence of HTTP requests for audio and video segments

Adjustable bitrate(ABR) algorithm decided what format to request

Key Objectives: Improved quality of experience, high CPU efficiency, MORE QUIC!

Proprietary + Confidential

CPU: January 2017 at 2x HTTPS 1.1

Early implementations were 3.5x

Obvious fixes reduced this to 2x

Don’t call costly functions multiple times

No allocations in the data path

Minimize copies

Workload specific datastructures

Improve

Profile

Deploy

Proprietary + Confidential

Challenge: Keeping QUIC running

Currently supports 4 gQUIC versions and 3 IETF QUIC drafts, including 2 invariants

QUIC was 1/3rd of Google’s egress!

A bit like changing the tires while driving

Proprietary + Confidential

Extra Challenges

Library used by two internal server binaries, Chromium and Envoy
Lots of interfaces and visitors

Very ‘flexible’
4 congestion controllers, 3 crypto handshakes,
MANY experimental options

Originally written without CPU efficiency in mind

Proprietary + Confidential

CPU: January 2017 at 2x

Only sendmsg and one
memcpy are obviously
costly

Other CPU users are tiny

Proprietary + Confidential

CPU rules of thumb

Register

L1 Cache

Branch Misprediction

L2 Cache

L3 Cache

Main Memory

Spatial locality and temporal locality matter!

1 cycle

1-3 cycles

~10 cycles

~10 cycles

~100 cycles

250 cycles

~32

32k

128k-256k

1MB/core

Huge

Proprietary + Confidential

Modern Compilers and CPUs try to hide this

Compilers

Inlining functions

Reordering instructions

De-virtualization

CPU

Cache prefetch

Branch prediction

Goal: make these optimizations easier or possible
Prefetch and predictors reward close, consistent access

Proprietary + Confidential

Sending and Receiving
UDP

Proprietary + Confidential

Why is sending and receiving so important?

UDP sending is 25% of the CPU in our workload
>50% in some environments and benchmarks

UDP sendmsg is up to 3.5x the cycle/byte of TCP in Linux*

UDP sendmmsg only saves a syscall per packet vs sendmsg
Has very few restrictions, multiple destinations, etc

https://netdevconf.info/0x12/session.html?developing-and-deploying-a-tcp-replacement-for-the-web

Proprietary + Confidential

Sending UDP Packets: UDP GSO in Linux

UDP GSO is 7% faster than TCP GSO**

Pacing sent 1 UDP packet at once, had to make it bursty

UDP Payload

64k ‘packet’

Contains up to 50 separately
encrypted QUIC packets

UDP Header

1400 byte QUIC packet

Kernel segments

https://lwn.net/Articles/752184/
https://pdfs.semanticscholar.org/1083/aef3da277ecf5832afa4433c4d8f13e57800.pdf

Proprietary + Confidential

Sending UDP Packets: kernel bypass

Bypassing some of the the kernel can be faster than UDP sockets on Linux

DPDK is full kernel bypass
AF_XDP is a new kernel API as fast as DPDK*
Google has a software NIC**

Cons: Increased complexity, escalated privileges, dedicated machines

Alternately, everything in the kernel can be fast***

https://www.dpdk.org/
https://www.kernel.org/doc/html/v4.18/networking/af_xdp.html
http://vger.kernel.org/lpc_net2018_talks/lpc18_pres_af_xdp_perf-v3.pdf
https://www.cc.gatech.edu/~amsmti3/files/carousel-sigcomm17.pdf
https://www.google.com/url?q=https://medium.com/netflix-techblog/serving-100-gbps-from-an-open-connect-appliance-cdb51dda3b99&sa=D&ust=1573043001360000&usg=AFQjCNEFAGr0JWThwmF001vlPDY3q28EEg

Proprietary + Confidential

Sending UDP Packets: UDP GSO with hardware offload

Hardware offload is now much more common and provides another 2-3x

Mellanox mlx5, Intel ixgbem, likely others

Cumulative acceleration is ~10x ideally and 5x in typical cases

=> 50% CPU usage(worst case) => 5% CPU usage => 2x improvement

GSO with hardware offload can be the best of both worlds

Proprietary + Confidential

Sending UDP Packets: UDP GSO with pacing offload

Pacing offload can enable larger sends (patchset)
ie: 16 packets instead of 4 packets

The API and implementation are not yet finalized
Currently 1 to 15ms increments
=> If you’re interested in using it, please provide feedback and/or benchmarks

GSO with pacing and hardware offload is very promising

http://patchwork.ozlabs.org/project/netdev/list/?series=182269&state=*

Proprietary + Confidential

Receiving UDP Packets

mmap RX_RING was much faster

recvmmsg performance improved over time, now comparable

Using a BPF to steer by QUIC connection ID avoids thread hopping

UDP GRO(patch) improves receive CPU 35%

https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt
https://lwn.net/Articles/768995/
https://gitlab.codycook.us/github/linux/commit/e20cf8d3f1f763ad28a9cb3b41305b8a8a42653e

Proprietary + Confidential

Detailed Optimizations

Proprietary + Confidential

Fast path common cases

Observation: Packets are sent in order and most packets arrive in order

Ack processing

Data receipt

Bulk data transmission

Optimizing for 1 STREAM frame/packet saved 5% alone!

Proprietary + Confidential

Efficiently Writing Data

Old: On every send, a packet data-structure copied all frames and data
Packets were retransmitted, not data or frames

New: Move data ownership to streams
Enabled bulk application writes
Eliminated a buffer allocation per packet
Buffers remain contiguous
Allowed the application to transfer data ownership

Makes QUIC more like TCP!

Proprietary + Confidential

Increasing memory locality

Eliminate pointer chasing and virtual methods

Place all connection state in a single arena

Inline commonly used fields

vector

QuicFrame

StreamFrame

<empty> …..

InlinedVector type StreamFrame

Example

Proprietary + Confidential

Send fewer ACKs

Acknowledgement processing is expensive on servers
Sending packets is expensive, particularly on mobile clients

BBR works well, because it’s rate-based

Critical(25% reduction) to achieving parity with TCP in Quicly benchmarks

IETF draft: draft-iyengar-quic-delayed-ack

TCP already creates ‘stretch ACKs’

https://www.fastly.com/blog/measuring-quic-vs-tcp-computational-efficiency
https://tools.ietf.org/html/draft-iyengar-quic-delayed-ack

Proprietary + Confidential

Feedback Directed Optimization (aka FDO)

Code shared with Chromium ⇨ lots of interfaces

FDO can de-virtualize and prefetch

Userspace enables experimentation & flexibility ⇨ great monitoring, analysis tools

FDO discovers tracing is unused >99% of the time

ThinLTO for cross-module optimization

15% CPU savings

https://clang.llvm.org/docs/ThinLTO.html

Proprietary + Confidential

Q4 2017 vs Today

Proprietary + Confidential

What is the future?

Proprietary + Confidential

Sending and Receiving UDP: Wider GSO support

Fast UDP send and receive APIs for more platforms

Android, Windows, iOS...

Hardware GSO widely supported : As fast as TCP TSO

Proprietary + Confidential

Sending UDP: Crypto offload

“Making QUIC Quicker with NIC Offload”
Once UDP send are fast, symmetric Crypto is ~30% of CPU
Offload on the receive side enables reordering in the NIC

Open Question: What is the right API?

Open Question: Is QUIC offload worthwhile?
TSO has mixed benefits, especially at lower bandwidths
With symmetric offload, QUIC should be as fast as kTLS

https://epiq20.hotcrp.com/doc/epiq20-final15.pdf

Proprietary + Confidential

IETF QUIC: Optimizing header encryption

IETF QUIC adds header protection, requiring 2-pass encryption
Encrypts header bits and the packet number for privacy
Small encryption operations are MUCH more expensive than bulk

Known Optimizations
Encrypt multiple headers in one pass (WinQUIC, Litespeed)
Calculate header protection in parallel (PicoTLS Fusion)

PicoTLS Benchmarks: 1, 2

https://github.com/litespeedtech/lsquic/commit/da99665b1c3227cbd436670f683e7a48034a41ab
https://github.com/h2o/picotls/pull/310
https://github.com/h2o/picotls/pull/310
https://github.com/h2o/quicly/pull/359

Proprietary + Confidential

Will HTTP/3 be more efficient than HTTP/1?

Proprietary + Confidential

Questions?

IETF WG Page
Base IETF drafts: transport, recovery, tls, http, qpack, invariants
Chromium QUIC Code: cs.chromium.org
Chromium QUIC page: www.chromium.org/quic
Profiling a warehouse scale computer paper
QUIC SIGCOMM Tutorial

https://datatracker.ietf.org/wg/quic/about/
https://tools.ietf.org/html/draft-ietf-quic-transport
https://tools.ietf.org/html/draft-ietf-quic-recovery
https://tools.ietf.org/html/draft-ietf-quic-tls
https://tools.ietf.org/html/draft-ietf-quic-http
https://tools.ietf.org/html/draft-ietf-quic-qpack
https://tools.ietf.org/html/draft-ietf-quic-invariants
https://cs.chromium.org/chromium/src/net/third_party/quiche/src/quic/
https://www.chromium.org/quic
https://drive.google.com/file/d/0B9mUEdumneTLQjFwNklfRl85ODg/view
https://conferences.sigcomm.org/sigcomm/2020/tutorial-quic.html

